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1 Basic Definitions

Definition 1.1. A category C consists of

1. A collection of objects, denoted ob C.

2. A collection of morphisms, denoted mor C.

3. Two operations dom and codom from morphisms to objects such that, given two
objects A and B and a morphism between them f : A→ B, we have dom f = A and
codom f = B.

4. An operation assigning to each object A an identity morphism 1A : A→ A.

5. A partial binary operation (f, g) 7→ gf such that gf is defined if and only if dom g =
codom f satisfying the following properties:

• f1A = f and 1Bf = f for all f : A→ B.

• h(gf) = (hg)f whenever gf and hg are defined.

Definition 1.2. Let C be a category and f : A → B ∈ mor C a morphism. We say that f
is an isomorphism if there exists a morphism g : B → A such that fg = 1B and gf = 1A.
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Remark. The definition of a category is not formalised within set theory. If ob C and mor C
are sets (in some model of set theory) then we call C a small category. Furthermore, cate-
gories could be presented as a 1-sorted theory by identifying objects with their corresponding
identity morphisms.

Example 1.3. The category Sets has all sets as objects and all functions between them as
morphisms. Strictly speaking, the morphisms are pairs (f,B) where f is the set theoretic
definition of the function and B is its codomain (since the set-theoretic definition of a
function does not contain information about its codomain).

Example 1.4. The category Grp has all groups as objects and all group homomorphisms
between them as morphisms. Similarly, Ring is the category whose objects are all rings
and whose morphisms are all ring homomorphisms between them.

Example 1.5. The category Top has all topological spaces as objects and all continuous
functions between them as morphisms.

Example 1.6. Given a category C, we can construct a new category called the opposite
category, denoted Cop with the same objects and morphisms as C but with the domain and
codomain maps interchanged and the order of composition reversed.

Example 1.7. A category with only one object is a monoid. For example, a group is a
small category with one object where every morphism is an isomorphism. A category where
every morphism is an isomorphism is called groupoid. For example, given any category C,
we can construct the groupoid Iso C with the same objects as C but only isomorphisms of C
as morphisms.

Example 1.8. The fundamental groupoid Π(X) of a space X has points of X as objects
and morphisms x → y are homotopy classes relative to [0, 1] of paths a : [0, 1] → X with
a(0) = x and a(1) = y.

Example 1.9. A discrete category is one whose only morphisms are the identities.

Example 1.10. A category C in which there is at most one morphism from A to B for
each pair of objects (A,B) is called a preorder. If, in addition, every isomorphhism is an
identity then we have a partial order.

Example 1.11. The category Rel has the same objects as Sets but morphisms A → B

are relations (subsets of A×B. The composite A
R−→ B

S−→ C is given by

S ·R = { (a, c) | (∃ b ∈ B)((a, b) ∈ R ∧ (b, c) ∈ S) }

Moreover, the category Part has partial functiions as morphisms. In other words, relations
satisfying the uniqueness condition of functions but not necessarily the existence condition.

Example 1.12. Given a field K, the category MatK has natural numbers as objects and
the morphisms n→ p are p×n matrices with entries in K and composition given by matrix
multiplication.

Definition 1.13. Let C and D be categories. A functor F : C → D consists of

1. A mapping A 7→ FA from ob C to obD

2. A mapping f 7→ Ff from mor C to morD
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such that F commutes with the domain and codomain maps, F (1A) = 1FA for all A ∈ obA,
and F (gf) = (Fg)(Ff) whenever fg is defined.

Remark. We shall write Cat to refer to the category of small categories and functors
between them.

Example 1.14. The forgetful functor U : Grp → Set sends a group to its underlying
set and a homomorphism to itself.

Example 1.15. The functor f : Rng→ Grp sending a ring to its group of units.

Example 1.16. Given a set A,let PA be its power set. We can make P into a functor Set→
Set. Indeed, given f : A→ B, we can define Pf(A′) = { f(a) | a ∈ A′ } ⊆ B. We also have
a functor P ∗ : Set→ Setop defined by P ∗A = PA and P ∗f(B′) = { a ∈ A | f(a) ∈ B′ }.

Definition 1.17. Let C and D be categories. We define a contravariant functor from C
to D to be a functor F : C → Dop.

Example 1.18. Given a field K, the dual of a vector space V over K is the vector space
V ∗ of linear maps V → K. Given f : V → W the dual function f ∗ : V ∗ → W ∗ is
given by θ 7→ θ ◦ f . This makes (·)∗ into a functor from Modop

K to ModK . Similarly,
we have a functor Relop to Rel sending a set A to itself and a relation R ⊆ A × B to
Rop = { (b, a) ∈ B × A | (a, b) ∈ R }

Example 1.19. The construction C → Cop is a functor Cat→ Cat.

Example 1.20. A functor between monoids is a monoid homomoprhism, in particular, a
functor between groups is a group homomorphism (so Grp is a subcategory of Cat).

Example 1.21. A functor between posets is a map that preserves order.

Example 1.22. Given a group G, a functor G → Set is a permutation representation of
G. Similarly, a functor G→ModK is a K-linear representation of G.

Example 1.23. The assignment (X, x) → Π1(X, x) is a functor Top∗ → Grp (infact,
Htpy∗ → Grp). Similarly, the (singular) homology groups are functors H• : Htpy→ Grp.

Definition 1.24. Let C and D be categories and F,G : C ⇒ D two functors. A natural
transformation α : F → G assigns to each A ∈ ob C a morphism αA : FA → GA in D
such that the following diagram commutes:

FA FB

GA GB

Ff

αA αB

Gf

for all f : A→ B ∈ mor C.

Example 1.25. Consider the power set functor P : Set → Set. There is a natural trans-
formation η : 1Set → P given by ηA(a) = { a }. This is indeed natural since, given two sets
A,B ∈ ob Set and a function f : A→ B ∈ mor Set we have

Example 1.26. Let G and H be groups and f, g : G ⇒ H homomorphisms. A natural
transformation α : f → g picks out a particular element b ∈ H such that hf(x) = g(x)h for
all x ∈ G. In other words, f and g are conjugate homomorphisms.
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Definition 1.27. Let C and D be categories. We write [C,D] for the category of all functors
and natural transformations between them.

Lemma 1.28. Let C and D be categories, F,G : C ⇒ D functors between them and α : F →
G a natural transformation. Then α is an isomorphism in [C,D] if and only if each αA is
an isomorphism in D.

Proof. The forward direction is trivial. Assume that each αA has an inverse βA : GA→ FA.
We need to show that

GA GB

FA FB

Gf

βA βB

Ff

is commutative for all f . We have that

(Ff)βA = βBαB(Ff)βA = βB(Gf)αAβA = βB(Gf)

as required.

Definition 1.29. Let C and D be categories and F : C → D a functor. We say that

1. F is faithful if, given f, g ∈ mor C, the equations dom f = dom g, codom f = codom g
and Ff = Fg imply that f = g.

2. F is full if, given any g : FA→ FB in D, there exists f : A→ B in C with Ff = g.

3. A subcategory C ′ of C is full if the inclusion C ′ ↪→ C is a full functor.

Example 1.30. Grp is a full subcategory of the category of monoids. However, Mon is a
non-full subcategory of the category Sgrp of semi-groups.

Definition 1.31. Let C and D be categories. We define an equivalence between C and
D to be a pair of functors F : C → D and G : D → C together with natural isomorphisms
α : 1C → GF and β : FG→ 1D. We denote this equivalence by C ' D.

Furthermore, we say that a property P of categories is categorical if whenever C has
property P and C ' D then D has property P .

Example 1.32. Being a groupoid is categorical while being a group is not.

Example 1.33. Given an object B of a category C, we define the slice category, denoted
C/B to have morphisms f : A→ B in C as objects and morphisms defined as follows: given
two objects f : A→ B and g : C → B, h : A→ C is a morphism of C/B provided that the
diagram

A C

B

h

f
g

commutes.
The category Set/B is equivalent to the category SetB of B-indexed families of sets. We

have a functor F : Set/B → SetB which sends an object f : A→ B to (f−1(b)|b ∈ B) and its
inverse is given by G : SetB → Set/B which sends (Ab|b ∈ B) to

∐
b∈B Ab =

⋃
b∈B Ab×{ b }.
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Example 1.34. The category Part of sets and partial functions is equivalent to the category
Set∗ of pointed sets. Indeed, define a functor F : Set∗ → Part that sends the object (A, a)
to A\ { 0 } and the morphism f : (A, a) → (B, b) to the partial function sending x ∈ A to
f(x) if f(x) 6= b and undefined otherwise. Conversely, we have the functor G : Part→ Set∗
which sends the object A to (A ∪ { a } , a) and f : A → B to Gf defined by Gf(x) = f(x)
if x ∈ A and f(x) is defined and B otherwise.

Example 1.35. The category fdModK of finite-dimensional vector spaces over a field K
is equivalent to fdModK

op via the dualisation functor (·)∗ and the natural isomorphism
α : 1fdModK

→ (·)∗∗.

Example 1.36. We also have an equivalence fModK
∼= MatK . Indeed, consider the

function F : MatK → fdModK which sends n ∈ ob MatK to Kn and a matrix A ∈
mor MatK to the linear map represented by A with respect to the standard bases of the
spaces. The functor in the opposite direction is defined similarly.

Lemma 1.37. Let C and D be categories and F : C → D a functor. Then F is part of
an equivalence C ∼= D if and only if F is full, faithful and essentially surjective (for all
B ∈ obD, there exists A ∈ ob C such that FA ∼= B).

Proof. First assume that C ∼= D. Let G : D → C, α : 1C → GF and β : FG → 1D be
the second functor and the natural isomorphisms that induce this equivalence. Then F is
clearly essentially surjective as we have

FGB ∼= 1DB ∼= B

We next show that F is faithful. To this end, we must show that given f, g : A→ B ∈ mor C
satisfying Ff = Fg we have f = g. By the naturality of α we have the commutative diagram

GFA GFB

A B

GFf=GFg

αA

f

αB

Similarly, we get a commutative diagram for g. We thus have

f = α−1
B (GFf)αA

= α−1
B (GFg)αA

= g

and so F is faithful. We next show that F is full. To this end, we must show that given
g : FA → FB ∈ morD, there exists f : A → B ∈ mor C such that Ff = g. We claim that
f = αA(Gg)α−1

B is the desired morphism. Observe that Gg = α−1
A (f)αB. Furthermore, by

the naturality of α we have the commutative diagram

GFA GFB

A B

GFf

αA

f

αB

and so GFf = α−1
A (f)αB. We hence have Gg = GFf . By the same argument as above, G

is faithful and so Ff = g as desired.
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Conversely, suppose that F is essentially surjective and fully faithful. We need to show
that C ∼= D. To this end, we must exhibit a functor G : D → C and natural isomorphisms
α : 1C → GF and β : FG→ 1D.

For all D ∈ obD, there exists a C ∈ ob C such that FC ∼= D by the essential surjectivity
of F . We define a functor G : D → C that acts on objects of D by setting GD = C. We
shall also use the essential surjectivity of F to choose an isomorphism βD : FGD → D for
all D ∈ obD. We must now define G on morD. Given g : X → Y ∈ morG, we define Gg
to be the unique morphism in mor C whose image under F is the composition

FGX X Y FGY
βX g β−1

Y

This definition of Gg ensures that β is a natural isomorphism. We must check that this is
functorial. Given any other morphism h : Y → Z such that the composition gh is defined,
the faithfulness of F implies that G(g) ◦G(h) = G(gh).

Finally, we shall define α : 1C → GF . Given A ∈ C, define αA : A → GFA to be
the unique morphism in C satisfying FαA = β−1

FA. This is clearly an isomorphism since the
unique morphism in C that is mapped to βFA is a two-sided inverse for it. It remains to
show that α is a natural transformation. To this end, consider the diagram

A B

GFA GFB

f

αA αB

GFf

We need to show that this diagram is commutative. Applying the functor F to the diagram
yields

FA FB

FGFA FGFB

Ff

β−1
FA=FαA FαB=β−1

FB

FGFf

which commutes by the naturality of β. In particular, we have

F (αB ◦ f) = FαB ◦ Ff
= β−1

FB ◦ Ff
= β−1

FA ◦ FGFf
= F (FαA ◦GFf)

whence the faithfulness of F implies that αB ◦ f = FαA ◦GFf and so the original diagram
is commutative and α is natural.

Definition 1.38. Let C be a category and C ′ a subcategory of C. We say that C ′ is a
skeleton of C if C ∼= C ′ and no two distinct objects of C ′ are isomorphic. Furthermore, we
say that C is skeletal if it is a skeleton of itself.

Example 1.39. Given a field K, MatK is skeletal. Indeed, the full subcategory of standard
vector-spaces Kn is a skeleton of fdModK

∼= MatK.

Definition 1.40. Let C be a category and f : A→ B ∈ mor C a morphism.

1. We say that f is a monomorphism if, given g, h : C ⇒ A, the equation fg = fh
implies g = h. In this case, we say that f is monic and we write f : A� B.
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2. We say that f is an epimorphism if, given k, l : B ⇒ D, the equation kf = lf
implies k = l. In this case, we say that f is epic and we write f : A� B.

3. We say that C is balanced if every epic and monic f ∈ mor C is an isomorphism.

Example 1.41. Let f ∈ mor Set. Then f is monic if and only if it is injective. Indeed,
first suppose that f is injective. Let g, h : C → A be such that fg = fh. Choose x ∈ C.
Then we havea f(g(x)) = f(h(x)). But f is injective and so g(x) = h(x). But x was
arbitrary so g = h and f is monic. Conversely, suppose that f is monic. Let C = { z } be
a one-element set. Let x, y ∈ A such that f(x) = f(y). Let g, h : C ⇒ A be functions such
that g(z) = x, h(z) = y. Then since f is monic, we have that f(g(z)) = f(h(z)) implies that
g(z) = h(z) and so x = y whence f is injective.

Furthermore, f is epic if and only if it is surjective. Indeed, first suppose that f is
surjective. We need to show that given k, l : B ⇒ D such that kf = lf then k = l. Since f
is surjective, for all b ∈ B, there exists a ∈ A such that f(a) = b. Then k(f(a)) = l(f(a))
whence k(b) = l(b) for all b ∈ B and so k = l. Conversely, suppose that f is epic. We prove
by contradiction so assume that there exists a b ∈ B such that there exists no a ∈ A with
f(a) = b. Define D = { 0, 1 } and the functions k, l : B ⇒ D satisfying k(x) = 1 for all
x ∈ B and l(x) = 1 for all x ∈ B except when x = b. We have that k(f(a)) = l(f(a)) for all
ainA. Since f is epic, it follows that k = l which is clearly a contradiction. Hence f must
be surjective.

We thus see that Set is balanced.

Example 1.42. In Grp, we also have that f ∈ mor Grp is injective (resp. surjective) if
and only if f is monic (resp. epic). The proof for monicity is similar to that of sets using Z
instead of a one-point set. Hence Grp is balanced.

Example 1.43. In Rng, we have that ring homomorphisms are monic if and only if they
are surjective. However, we do not have that an epic ring homomorphism is necessarily
surjective. Indeed, consider the inclusion f : Z ↪→ Q. Let R be any ring and k, l : Q → R
ring homomorphisms. Suppose that kf = lf . Then for any integer m we clearly have
k(m) = l(m). Now let a/b ∈ Q. Then

k
(a
b

)
=
k(a)

k(b)
=
l(a)

l(b)
= l
(a
b

)
and so k = l whence f is a non-surjective epimorphism. Hence Rng is not balanced.

Example 1.44. In Top we also have f ∈ mor Top is monic (resp. epic) if and only if
f is injective (resp. surjective). However, Top is not balanced as a bijective continuous
map does not necessarily have a continuous inverse and thus monic epimorphisms are not
necessarily isomorphisms.

2 The Yoneda Lemma

Definition 2.1. Let C be a category. We say that C is locally small if for all A,B ∈ ob C,
the morphisms are parametrised by a set C(A,B).

Remark. If C is a locally small category then we have the hom-functor

C(A, ·) : C → Set

B 7→ C(A,B)
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which assigns to every B ∈ ob C the hom-set C(A,B). Similarly the assignment A 7→
C(A,B) becomes a functor Cop → Set.

Theorem 2.2 (Yoneda Lemma). Let C be a locally small category, A ∈ ob C an object and
F : C → Set a functor.

1. There exists a bijection between natural transformations C(A, ·)→ F and elements of
FA.

2. Such a bijection is natural in both A and F .

Proof.

Part 1: Given a natural transformation α : C(A, ·) → F , define Φ(α) = αA(1A) ∈ FA.

Conversely, given x ∈ FA, define a natural transformation Ψ(x)B(A
f−→ B) = (Ff)(x) ∈

FB. We must first check that Ψ(x) is indeed natural. To this end, let g : B → C be a
morphism in C. We must check that the following diagram is commutative

C(A,B) C(A,C)

FB FC

C(A,g)

Ψ(x)B Ψ(x)C

Fg

so that Ψ(x) is a well-defined natural transformation. Fix f ∈ C(A,B). We have that

Ψ(x)C(C(A, g)(f)) = Ψ(x)C(g ◦ f)

= F (g ◦ f)(x)

On the other hand, we have

Fg(Ψ(x)B(f)) = Fg(Ff(x))

= F (g ◦ f)(x)

and so the diagram is indeed commutative. We now claim that Φ and Ψ are mutually
inverse. Given x ∈ FA we have

Φ(Ψ(x)) = Ψ(x)(1A) = F (1A)(x) = 1FA(x) = x

Conversely, given a natural transformation α : C(A, ·) → F and f : A → B, the naturality
of α implies that

Ψ(Φ(α))B(f) = Ff(Φ(α))

= Ff(αA(1A))

= αB(C(A, f)(1A))

= αB(f)

and so Ψ(Φ(α)) = α.

Part 2: We shall prove this part of the theorem in the case that C is small (so that [C,Set]
is locally small).

We have two functors

C × [C,Set]→ Set

(A,F ) 7→ FA

C × [C,Set]→ Set

(A,F ) 7→ [C,Set](C(A, ·), F )
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where [C,Set](C(A, ·), F ) is understood to be the set of all natural transformations between
C(A, ·) and F . The statement of this part of the theorem asserts that Φ and Ψ are natural
isomorphisms between these two functors. We first show naturality in A. Suppose f : A′ →
A is a morphism in C. We need to show that the following diagram is commutative

[C,Set](C(A′, ·), F ) [C,Set](C(A, ·), F )

FA′ FA

Θ

ΦA′ ΦA

Ff

where Θ(α) = α ◦ C(f, ·) for a natural transformation α ∈ [C,Set](C(A′, ·), F ). Let α :
C(A′, ·)→ F be a natural transformation. On one hand we have, by naturality of α,

Ff(ΦA′(α)) = Ff(αA′(1A′)) = αA(f)

On the other hand, we have

ΦA(Θ(α)) = ΦA(α ◦ C(f, ·)) = (α ◦ C(f, ·)A(1A) = αA(f)

and hence Φ is natural in A. We now show that Φ is natural in F . To this end, let η : F → G
be a natural transformation of functions F,G : C ⇒ Set. We need to show that the following
diagram is commutative

[C,Set](C(A, ·), F ) [C,Set](C(A, ·), G)

FA GA

η◦−

ΦF ΦG

ηA

Fix α : C(A, ·)→ F . On one hand, we have

φG(η ◦ α) = (η ◦ α)A(1A) = ηA(αA(1A))

On the other hand, we have

ηA(ΦF (α)) = ηA(αA(1A))

and hence Φ is natural in F .

Corollary 2.3. Let C be a locally small category. Then the mapping

Y : Cop → [C,Set]

A 7→ C(A, ·)
(f : B → A) 7→ C(f, ·)

is a full and faithful functor referred to as the Yoneda embedding. In particular, every
locally small category is equivalent to a full subcategory of [Cop,Set].

Proof. We claim that Y is given on morphisms by the inverse of the bijective mapping

Φ : [C,Set](C(A, ·), C(B, ·))→ C(B,A)

from Theorem 2.2. If we prove this claim, we automatically obtain a full and faithful functor.
To this end, let α : C(A, ·)→ C(B, ·) be a natural transformation. Then

Y (Φ(α)) = Y (αA(1A)) = C(αA(1A), ·)

is a natural transformation. Given g : A→ C we have

Y (Φ(α))C(g) = C(αA(1A), C)(g) = g ◦ αA(1A)

Since α is a natural transformation, the following diagram is commutative
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C(A,A) C(A,C)

C(B,A) C(B,C)

C(A,g)

αA αC

C(B,g)

and so

g ◦ αA(1A) = αC(g ◦ 1A) = αC(1A)

We thus have

Y (Φ(α))C(g) = αC(1A)

whence Y is a left-inverse for Φ. Since Φ is bijective, Y must be a two-sided inverse as
desired. The statement about equivalences then follows immediately upon realising F is
essentially surjective onto its image.

Definition 2.4. Let C be a category. We say that a functor F : C → Set is representable
if it is naturally isomorphic to C(A, ·) for some A ∈ ob C. We define a representation of
a representable functor F : C → Set to be a pair (A, x) where A ∈ ob C, x ∈ FA and
Ψ(x) : C(A, ·)→ F is a natural isomorphism. Furthermore, x is referred to as a universal
element of F .

Proposition 2.5. Let C be a category and F : C → Set a functor. If (A, x) and (B, y) are
representations of F then there is a unique isomorphism f : A→ B such that Ff(x) = y

Proof. Consider the composition

C(B, ·) Ψ(y)−−→ F
Ψ−1(x)−−−−→ C(A, ·)

This is a natural isomorphism between the functors C(B, ·) and C(A, ·) and so the Yoneda
Lemma implies that this natural isomorphism is given by a unique morphism f : A → B.
We thus have a commutative diagram

C(B, ·) C(A, ·)

F

C(f,·)

Ψ(y) Ψ(x)

This yields a commutative diagram

C(B,B) C(A,B)

FB

C(f,B)

Ψ(y)B Ψ(x)B

We now chase 1B ∈ C(B,B) around the diagram in two ways:

Ψ(x)B(C(f,B)(1B)) = Ψ(x)B(f) = Ff(x)

Ψ(y)B(1B) = F (1B)(y) = 1FB(y) = y

and so Ff(x) = y as required.
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Example 2.6. The forgetful functor F : Grp → Set is represented by (Z, 1). Indeed,
consider the natural transformation

Ψ(1) : C(Z, ·)→ F

given by Ψ(1)B(Z φ−→ B) = (Fφ)(1). We claim that Ψ(1) is a natural isomorphism. To this
end, fix a group G ∈ ob Grp and let φ, ϕ : Z⇒ G. We have that

Ψ(1)B(φ) = Ψ(1)B(ϕ) ⇐⇒ (Fφ)(1) = (Fϕ)(1) =⇒ φ(1) = ϕ(1) =⇒ φ = ϕ

since 1 ∈ Z is a generator. Hence Ψ(1)B is injective. Furthermore, given g ∈ FG, there is a
unique homomorphism φ : Z → G mapping 1 7→ g and so Ψ(1)B is surjective. Hence Ψ(1)
is a natural isomorphism and the forgetful functor F is represented by (Z, 1)

Example 2.7. The forgetful functor F : Rng → Set is represented by (Z[X], X). This is
shown in the exact same way as the previous example.

Example 2.8. Let τ be any singleton topological space and x its unique element. Then
the forgetful functor F : Top → Set is represented by (τ, x). Indeed, we have a natural
transformation

Ψ(x) : C(τ, ·)→ F

given by Ψ(x)τ ′(τ
f−→ τ ′) = (Ff)(x). We claim that Ψ(x) is a natural isomorphism. To this

end, fix a topological space τ ∈ ob Top and f, g : τ → τ ′ continuous maps. Then

Ψ(x)τ ′(f) = Ψ(x)τ ′(g) =⇒ (Ff)(x) = (Fg)(x) =⇒ f(x) = g(x) =⇒ f = g

whence Ψ(x)τ ′ is injective. Furthermore, fix an element y ∈ τ ′. Then there is a unique
continuous map f : τ → τ ′ taking x to y and so Ψ(x)τ ′ is surjective. Thus Ψ(x) is a natural
isomorphism and the forgetful functor F is represented by (τ, x).

Example 2.9. The contravariant power set functor

P ∗ : Setop → Set

is represented by ({ 0, 1 } , { 1 }). Indeed, we have a natural transformation

Ψ({ 1 }) : C({ 0, 1 } , ·)→ F

given by Ψ({ 1 })B({ 0, 1 } f−→ B) = (Ff)({ 1 }). We claim that Ψ({ 1 }) is a natural isomor-
phism. To this end, fix a set B and f, g : { 0, 1 } → B morphisms in Setop. Then

Ψ({ 1 })B(f) = Ψ({ 1 })B(g) ⇐⇒ (Ff)({ 1 }) = (Fg)({ 1 }) =⇒ { f(1) } = { g(1) }

Now, f and g are given by set theoretic functions f, g : B ⇒ 0, 1 in Set. { f(1) } = { g(1) }
can then be interpreted in Set to mean that the collection of elements in B that map to
1 under f and g are the same. This completely determines the images of the rest of the
elements of B (they have to be 0) and so f and g define the same function in Set and thus
they define the same morphism in Setop. In other words, Ψ({ 1 })B is an injective mapping.
Now, given an element B′ of the power set of B, the characteristic function of B′ in Set
represents a morphism in Setop which maps to B′ under Ψ({ 1 })B and so Ψ({ 1 })B is also
surjective. It then follows that Ψ({ 1 }) is a natural isomorphism whence P ∗ is represented
by ({ 0, 1 } , { 1 }).
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Example 2.10. Let K be a field. Then the functor G given by the composition of the dual
vector space functor (·)∗ : ModK

op → ModK and the forgetful functor ModK → Set is
represented by (K, 1K). Indeed, we have a natural transformation

Ψ(1K) : C(K, ·)→ G

given by Ψ(1K)V (K
φ−→ V ) = (Gφ)(1K). We claim that Ψ(1K) is a natural isomorphism. To

this end, let V ∈ ob ModK be a vector space and φ, ψ : K ⇒ V linear maps. Then

Ψ(1K)V (φ) = Ψ(1K)V (ψ) ⇐⇒ (Gφ)(1K) = (Gψ)(1K) ⇐⇒ 1K ◦ φ = 1K ◦ ψ ⇐⇒ φ = ψ

Furthermore, if ψGV ∈ GV is a function ψ : V → K arising from a linear map ψV ∗ in V ∗

then ψ itself represents a morphism K
ψModK

op

−−−−−→ V in Modop
K . Such a ψModK

op maps to ψGV
under Ψ(1K)V and so Ψ(1K)V is surjective whence Ψ(1K) is a natural isomorphism and G
is representable by (K, 1K).

Definition 2.11. Let C be a locally small category and f, g : A ⇒ B morphisms of C.
Consider the functor

Ef,g : Cop → Set

C 7→ { (C
h−→ A) ∈ mor C | fh = gh }

which is a covariant subfunctor of Cop(A, ·) (as a functor C → Set, it is a contravariant
subfunctor of C(·, A)). A representation (if it exists) of Ef,g is called an equaliser of f and
g. Dually, we define the notion of a coequaliser to be a representation of the functor

F : C → Set

C 7→ {h : B → C | hf = hg }

We say that C has equalisers (resp. has coequalisers) if every pair of morphisms f and
g in C has an equaliser.

Proposition 2.12. Let C be a locally small category, f, g : A ⇒ B morphisms in C and
e : E → A a morphism such that fe = ge. Then (E, e) is an equaliser for f and g if and

only if h factors uniquely through e for all (C
h−→ A) ∈ mor C such that fh = gh. In other

words, we have a commutative diagram

E A B

C

e

f

g

h

Proof. Let (E, e) be a representation of Ef,g. Then e is an element of Ef,gE. In other words,
e : E → A is a morphism in C satisfying fe = ge. By definition of a representation, we have
a natural isomorphism

Ψ(e) : Cop(E, ·)→ Ef,g

Hence for all morphisms (C
h−→ A) ∈ Ef,gC, there exists a unique morphism (E

k′−→ C) ∈
mor Cop such that Ψ(e)C(k′) = h. Such a k′ corresponds to a morphism (C

k−→ E) ∈ mor C
with ek = h as desired.

The backwards implication can be proven by reversing the above argumentation to con-
struct a natural isomorphism Ψ(e).
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Example 2.13. Let f, g : A⇒ B ∈ mor Set. An equalizer for f and g is given by the set

E = { a ∈ A | f(a) = g(a) }

together with the inclusion i : E ↪→ A. Indeed, suppose that h : C → A ∈ mor Set is
another function satisfying fh = gh. We need to find a function j : C → E satsifying
ij = h. We may simply take

j : C → E

c 7→ i−1(h(c))

which is well-defined since the range of h is necessarily a subset of E.

Hence forth, all definitions or results labelled with a ? are to be understood as dualis-
able. For example, whenever a monomorphism appears, replace it with an epimorphism.
Whenever an equaliser appears, replace it when a coequaliser. Note that dualising often
involves reversing the direction of arrows in diagrams.

Proposition 2.14 (?). Let C be a category and f, g : A⇒ B morphisms in C. If e : E → A
is an equaliser for f and g then is necessarily monic. Dually, a coequaliser for f and g is
necessarily epic.

Proof. Suppose that a, b : X ⇒ E are a parallel pair of morphisms such that ea = eb. We
need to show that a = b. Now ea is a morphism from X to A and, since e is an equaliser,
it factors through e uniquely. Since ea and eb are both factorisations of ea through e, we
must have that a = b for them to be the same factorisation.

Definition 2.15 (?). Let C be a category and f : A� B a monomorphism.

1. We say that f is regular if it occurs as an equaliser for some two morphisms.

2. We say that f is split if there exists a morphism g : B → A such that gf = 1A.

Proposition 2.16 (?). Let C be a category and f ∈ mor C a morphism.

1. If f is split monic then it is regular.

2. If f is epic and regular monic then it is an isomorphism.

Proof.

Part 1: Suppose that f : A � B is split. Let g be its left-inverse so that gf = 1A. We
claim that f is the equaliser of fg and 1B. Indeed, we have that fgf = f1A = 1Bf . Now
suppose that h : C → B satisfies fgh = 1Bh = h. Hence h factors through f via gh. Now
suppose fk = h is another factorisation of h through f . Then fgh = fk whence gh = k by
the monicity of f . Hence h factors through f uniquely and f is an equaliser for fg and 1B.

Part 2: Suppose that f : A→ B is epic and regular. First assume that f is an equaliser of
the maps x, y : B ⇒ C. Then xf = yf whence x = y by epicness of f . Note that x1B = y1B
and so 1B factors through f uniquely, say fk = 1B for some k : B → A. Hence f is split
epic.

By the dual of Part 1, f is regular epic and so f is both monic and split epic. By the dual
of the previous paragraph, there exists a left inverse for f , say lf = 1A for some l : B → A.
Now observe that

l = l1B = lfk = 1Ak = k

and so f must be an isomorphism.
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Definition 2.17. Let C be a category and G a collection of objects of C.

1. We say that G is a separating family if for all parallel pairs f, g : A⇒ B in C such
that fh = gh for all h : G→ A with G ∈ G we have f = g.

2. We say that G is a dectecting family if for all f : A→ B such that every h : G→ B
with G ∈ G factors through f uniquely we have that f is an isomorphism.

3. If G = {G } is a singleton, we say that G is a seperator/detector.

Definition 2.18. Let C and D be categories, F : C → D a functor. We say that F reflects
isomorphisms if for all f ∈ mor C such that Ff is an isomorphism, we have that f is an
isomorphism.

Lemma 2.19. Let C be a locally small category and G ∈ G a collection of objects of C. Then

1. G is a separating family if and only if C(G, ·) is faithful for all G ∈ G.

2. G is a detecting family if and only if C(G, ·) reflects isomorphisms for all G ∈ G.

Proof.

Part 1: This is immediate from the definitions.

Part 2: Suppose that G is a detecting family. Let f : A → B be a morphism such that
C(G, f) is an isomorphism. We need to show that f is an isomorphism. Let h : G → B
be the morphism C(G, f). Then, by definition, we have that h = f ◦ g for some unique
g : G → A. Since G is a detecting family, we must have that f is an isomorphism and we
are done. All conditions in the proof are necessary and sufficient so this also proves the
backwards implication.

Proposition 2.20. Let C be a category.

1. If C is balanced then any separating family is detecting.

2. If C has equalisers then every detecting family is separating.

Proof.

Part 1: Let G be a separating family. Suppose that f : A → B is a morphism such that
every h : G → B with G ∈ G factors through f uniquely. We must show that f is epic and
monic. Assume that hf = gf for some g, h : B → C. Then any k : G → B with G ∈ G
satisfies hk = gk. Now, G is a separating family which implies that h = g and so f is epic.

Now suppose that fu = fv for some u, v : D ⇒ A. Then for any w : G → D we have
fuw = fvw. uw and vw are both factorisations of fuw through f and so must be equal.
Since G is separating, it follows that u = w and f is monic.

Since C is balanced and f is both monic and epic, we must have that f is an isomorphism
and we are done.

Part 2: Let G be a detecting family. Suppose that f, g : A ⇒ B satisfies fh = gh for all
h : G → A with G ∈ C. We need to show that f = g. Let e : E → A be an equaliser of
f and g. Then every h : G → A with fh = gh factors uniquely through e. Since G is a
detecting family, it follows that e is an isomorphism and so f = g as desired.
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Example 2.21. Given a category C, ob C is always a detecting and separating family.

Indeed, to see that ob C is a detecting family, fix an A
f−→ B ∈ mor C such that every

h : G → B factors through f uniquely for every G ∈ ob C. Then there exists h : B → A
such that fh = 1B. Note that f1A = f and f = fhf . By uniqueness of factorisations, we
must have that hf = 1A and so f is an isomorphism and ob C is a detecting family.

To see that ob C is a separating family, fix a parallel pair f, g : A ⇒ B in C such that
fh = gh for all h : G → A with G ∈ C. We need to show that f = g. By hypothesis,
idA : A→ A satisfies f1A = g1A and so f = g as desired and ob C is a separating family.

Example 2.22. In Set, 1 is both a detector and a separator. Indeed, Set is a locally small
category and Set(1, ·) is naturally isomorphic to the identity functor which is clearly faithful
and so 1 is a separator. Furthermore, Set is balanced and so 1 is also a detector.

Example 2.23. In Grp, Z is both a detector and a separator. Indeed, Grp is a locally
small category and Grp(Z, ·) is naturally isomorphic to the forgetful functor which is clearly
faithful and so 1 is a separator. Furthermore, Grp is balanced and so 1 is also a detector.

Definition 2.24 (?). Let C be a category and P ∈ ob C an object. We say that P is
projective if given a diagram

P

A B

g
f

e

there exists g : P → A ∈ mor C completing the diagram.

Lemma 2.25. Let C be a locally small category and P ∈ ob C an object. Then P is projective
if and only if C(P, ·) preserves epimorphisms.

Proof. Suppose that P is projective. Fix an epimorphism e : A� B in C. We need to show
that C(P, e) is an epimorphism. Note that C(P, ·) has its image in Set so it suffices to show
that C(P, e) is a surjective function of sets. Recall that C(P, e) is the function

C(P, e) : C(P,A)→ C(P,B)

g 7→ eg

Fix an f ∈ C(P,B). Since P is projective, there exists a g ∈ C(P,A) such that f = eg which
is exactly what it means for C(P, e) to be surjective. Note that the conditions throughout
the proof are all necessary and sufficient and so the backwards implication is also proven.

Proposition 2.26. Let C be a locally small category. Then the representable functors F :
C → Set are η-projective in [C,Set] where η is the class of pointwise surjective natural
transformations.

Proof. Suppose we are given a diagram

C(A, ·)

F G

β

α

for some object A ∈ C, functors F,G : C ⇒ Set and natural transformations α and β.
By the Yoneda Lemma, there is a one-to-one correspondence between elements of GA and
natural transformations between C(A, ·) and G. Let y ∈ GA be in correspondence with β.
By pointwise surjectivity of α, there exists x ∈ FA such that αA(x) = y. Appealing again to
the Yoneda Lemma, there exists a γ : C(A, ·)→ F in correspondence with x. By naturality
of the Yoneda Lemma, we then have that β = αγ and so C(A, ·) is projective.

15



3 Adjunctions

In order to define adjunctions, we will need to expand the idea of hom-sets to include
the possibility that a category is not locally small in the usual sense. In order to do this,
we will need to expand the underlying set theory that we are working in.

Definition 3.1. Let U be a set. We say that U is a Grothendieck universe if the following
conditions hold:

1. For all x ∈ y ∈ U we have x ∈ U .

2. For all x, y ∈ U we have {x, y } ∈ U .

3. If x ∈ U then the power set of x is a member of U .

4. If {xα }α∈I is a family of elements of U then
⋃
α∈I xα is an element of U .

If x ∈ U then we shall say that x is U-small.

Given a universe U , it can be shown that U is a model of ZFC (in other words all standard
ZFC operations apply to the elements of U). As such, ZFC cannot prove the existence of a
universe containing N and so, in order to obtain uncountable universes, we add the following
axiom to ZFC:

For any set x there exists a universe U such that x ∈ U .

Thanks to this axiom, given any operation that lands outside of a universe, there is guaran-
teed to be a bigger universe in which that operation lands. Intuitively, this means that all
sets are small given a large enough universe.

We may now apply this to categories. Given a universe, call a category U -small if ob C
and mor C are U -small sets. Furthermore, call a category locally U -small if, given objects
A and B, the collection of all morphisms between A and B form a U -small set. It is in this
way that we can make sense of hom-sets for categories that are not locally small in the usual
sense.

Given a category C, choose a universe U such that the morphisms of C form a U -small set.
Let V be a set large enough to contain all subsets of mor C. Define a category Ens = SetV
where the objects of Ens are all the elements of V and the morphisms are all the functions
between them. Then each hom-set C(A,B) with A,B ∈ C is an object of Ens. This then
defines a covariant hom-functor

C(A, ·) : C → Ens

B 7→ C(A,B)

Hence if a category C is not locally small in the usual sense, we may choose a universe U in
which C is locally U -small and work with Ens instead of Set. Note that if V is chosen to
be the universe of all small sets (in the usual sense) then Ens = Set.

Henceforth, we shall assume that all categories are locally small up to a large enough
universe U .
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Definition 3.2. Let C and D be categories and F : C → D, G : D → C functors. By an
adjunction between F and G, we mean a natural isomorphism between the functors

C(·, G(·)) : Cop ×D → Set

(A,B) 7→ C(A,GB)

D(F (·), ·) : Cop ×D → Set

(A,B) 7→ D(FA,B)

In this case, we say that F is left adjoint to G and write F a G.

Example 3.3. Let F : Set → Grp be the free group functor which sends a set A to the
free group on A. Then F is left adjoint to the forgetful functor U : Grp → Set. Indeed
fix a set A and a group G and consider the mapping Φ : Set(A,UG)→ Grp(FA,G) which

takes a function A
f−→ UG and sends it to the homomorphism FA

ϕf−→ G defined by taking
the values of f on the basis elements of FA then extending linearly. It is readily shown that
Φ is a bijection and so we have a one-to-one correspondence between the two hom-sets.

To see that this correspondence is natural in both A and G, let αA,G be the bijection
defined above for some set A and group G. Fix some morphism g : A → A′ in Setop. For
naturality in A, we need to show that the following diagram commutes:

Grp(FA,G) Grp(FA′, G)

Set(A,UG) Set(A′, UG)

Grp(Fg,G)

αA,G

Set(g,UG)

αA′,G

Let f ∈ Set(A,UG). On one hand we have

αA′,G(Set(g, UG)(f)) = αA′,G(f ◦ gop) = ϕf◦gop

On the other hand, note that Fg is the unique group homomorphism between FA′ and FA
induced by gop which is exactly ϕgop . Hence

Grp(Fg,G)(αA,G(f)) = Grp(ϕgop , G)(ϕf ) = ϕf ◦ ϕgop = ϕf◦gop

We thus see that the diagram is commutative and α is natural in A. Naturality in G follows
in a similar way.

Example 3.4. Let D : Set→ Top be the functor endowing a set with the discrete topology.
Then D is left adjoint to the forgetful functor U : Top → Set. Indeed, fix a set A and
a topological space τ . Consider the mapping Φ : Set(A,Uτ) → Top(DA, τ) which sends

a function A
f−→ Uτ to the corresponding continuous map DA

f−→ τ (this is well-defined
since the inverse image of an open set of τ under f will always be open in DA). Note that
we are abusing notation with f referring both to a function sets and a continuous map of
topological spaces. As before, it is easy to see that Φ is a one-to-one correspondence between
the hom-sets.

Let αA,τ be the correspondence given above. We shall show that α is natural in A. To
this end, fix some morphism g : A → A′ in Setop. We need to show that the following
diagram commutes:
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Top(DA, τ) Top(DA′, τ)

Set(A,Uτ) Set(A′, Uτ)

Top(Dg,τ)

αA,τ

Set(g,Uτ)

αA′,τ exact

Let f ∈ Set(A,UG). On one hand, we have

αA′,τ (Set(g, Uτ)(f)) = αA′,τ (f ◦ gop) = f ◦ gop

On the other hand we have

Top(Dg, τ)(αA,τ (f)) = Top(gop, τ)(f) = f ◦ gop

and so α is natural in A. Naturality in τ follows in a similar way.

Example 3.5. Let I : Set → Top be the functor endowing a set with the indiscrete
topology. Then I is right adjoint to the forgetful functor U : Top→ Set.

Example 3.6. Consider the functor D : Set → Cat which takes a set A to the discrete
category DA where obDA = A and morDA = { 1X : X → X | X ∈ A }. Then D is left
adjoint to ob : Cat → Set. On the other hand, the functor I : Set → Cat such that
ob IA = A and mor IA = { f : X → Y | X, Y ∈ A } is a right adjoint to ob.

Example 3.7. The contravariant powerset functor P ∗ : Setop → Set is self-adjoint on the
right. This is easy to see by arguing with cardinal numbers. We need to find a bijection
between Set(A,P ∗B) and Set(B,P ∗A). Assume that A and B are infinite sets of cardinality
κ and µ respectively with κ ≥ µ (the finite case follows the same argumentation). Then

|Set(A,P ∗B)| = (2µ)κ = 2µκ = 2κ

On the other hand, we have that

|P ∗(A×B)| = 2κµ = 2κ

The two sets thus have the same cardinality and so there must exist a bijection between
them. We then have that

Set(A,P ∗B) ∼= P ∗(A×B) ∼= P ∗(B × A) ∼= Set(B,P ∗A)

It is also easy to see that this bijection is natural in both A and B.

Definition 3.8 (?). Let C be a category. We define an initial object I ∈ ob C to be one
such that for all X ∈ ob C there is exactly one morphism I → X. Dually, a terminal
object T ∈ ob C is one such that for all X ∈ C, there is exactly one morphism X → T .

Example 3.9. The terminal object of Cat is the discrete category consisting of one object
and one morphism.

Example 3.10. Let 1 be the terminal object of Cat and C a category. Consider the functor
F : C → 1 and suppose that L a F . Let A be the unique object of C such that LX = A.
By definition, we have

C(A,LX) ∼= 1(FA,X) = 1(X,X) = { 1X }

and so A is an initial object of C. In other words, specifying a left adjoint for F is the same
as specifying an inital object of C. Dually, specifying a right adjoint for F is the same as
specifying a terminal object of C.
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Definition 3.11 (?). Let C and D be categories and G : D → C a functor. Given A ∈ ob C,
we define the comma (or arrow) category, denoted (A ↓ G), to be the category whose
objects are pairs (B, f) with B ∈ obD and f : A → GB and whose morphisms (B, f) →
(B′, f ′) are morphisms (B

g−→ B′) ∈ morD such that the diagram

A GB

GB′

f

f ′
Gg

commutes.

Theorem 3.12. Let C and D be categories and G : D → C a functor. Then specifying a left
adjoint for G is equivalent to specifying an initial object of (A ↓ G) for all A ∈ C.

Proof. Suppose that F : C → D is a left adjoint for G. In particuar, we have that

D(FA, FA) ∼= C(A,GFA) for any A ∈ ob C. Hence (FA
1FA−−→ FA) ∈ morD corresponds

to some morphism (A
ηA−→ GFA) ∈ mor C. We claim that (FA, ηA) is an initial object

of (A ↓ G). To this end, fix an object (B, f) in (A ↓ G). We need to show that there
exists a unique morphism (FA, ηA) → (B, f). By definition, we need to find a morphism

(FA
g−→ B) ∈ morD such that the diagram

A GFA

GB

ηA

f
Gg

commutes. Were such a g to exist, the above diagram commutes if and only if the diagram

FA FA

B

1A

f ′
g

commutes where f ′ corresponds to f under the adjunction. Hence g must be equal to f ′

and we are done.
Conversely, suppose that for all A ∈ ob C we are given an initial object (BA, ηA) of

(A ↓ G). We define a functor F by FA = BA on objects and on morphisms f : A → A′ to
be the unique morphism in (A ↓ g) between (FA, ηA) and (FA′, ηA′f). In other words, Ff
is the unique morphism in D making the following diagram commute:

A GFA

A′ GFA′

ηA

f GFf

ηA′

To see that F is indeed functorial, suppose that f : A→ A′ and f ′ : A′ → A′′ are morphisms
in C. Then (Ff ′)(Ff) and F (f ′f) are both morphisms between (FA, ηA) and (FA′′, ηA′′f

′f).
But (FA, ηA) is initial so these morphisms must be the same.

We claim that F is left-adjoint to G. Note that, by construction, η : 1C → GF is a natural
transformation. Suppose we are given an object (B, y) in (A ↓ g). Then y is a morphism
y : A→ GB. Since (FA, ηA) is initial, there exists a unique morphism (FA, ηA)→ (B, y) in
(A ↓ g). Such a morphism is a morphism (FA

x−→ B) ∈ morD making the following diagram
commute:
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A GFA

GB

ηA

y Gx

This gives us a bijection between C(A,GB) and D(FA,B). Write this bijection as

αA,B : D(FA,B)→ C(A,GB)

x 7→ (Gx)ηA

We claim that α is a natural isomorphism between the functors

C(·, G(·)) : Cop ×D → Set

(A,B) 7→ C(A,GB)

D(F (·), ·) : Cop ×D → Set

(A,B) 7→ D(FA,B)

To this end, we must show that α is natural in both A and B. Hence suppose that (A′
f−→

A) ∈ mor C. We must show that the diagram

C(A,GB) C(A′, GB)

D(FA,B) D(FA′, B)

C(f,GB)

αA,B

D(F ,B)

αA′,B

commutes. To see this, let x ∈ D(FA,B). By naturality of η, we have

αA′,B(D(Ff,B)(x)) = αA′,B(x ◦ (Ff))

= G(x ◦ (Ff))ηA′

= Gx ◦GFf ◦ ηA′
= Gx ◦ ηA ◦ f
= αA,B(x) ◦ f
= C(f,GB)(αA,B(x))

and so α is natural in A. For naturality in B, suppose that (B
f−→ B′) ∈ morD. We must

show that the diagram

C(A,GB) C(A,GB′)

D(FA,B) D(FA,B′)

C(A,Gf)

αA,B

D(FA,f)

αA,B′

To see this, let x ∈ D(FA,B). We have that

αA,B′(D(FA, f)(x)) = αA,B′(fx) = G(fx)ηA = Gf ◦Gx ◦ ηA = Gf ◦ αA,B(x) = C(A,Gf)(αA,B(x))

and so α is natural in B. Therefore, F is a left adjoint for G.

Corollary 3.13. Let C and D be categories. If G : D → C is a functor with left adjoints
F, F ′ : C → D then there exists a natural isomorphism α : F → F ′.
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Proof. By Theorem 3.12 (FA, ηA) and (F ′A, η′A) are both initial objects of (A ↓ G) for all
A ∈ ob C. It is easy to see that any two inital objects of a category must be isomorphic
so there exists an isomorphism (FA, ηA)

αA−→ (F ′A, η′A) ∈ mor(A ↓ G). By definition, αA
is a morphism (FA

αA−→ F ′A) ∈ morD. We claim that α is natural in A. Indeed, given
f : A→ A we have the diagram

FA F ′A

FA′ F ′A′

αA

Ff F ′f

αA

Note that both ways round the square are morphisms (FA, ηA)→ (F ′A′, η′A′f) in (A ↓ G).
But (FA, ηA) is initial in (A ↓ G) and so these morphisms must be equal and the diagram
is commutative. Hence α is natural in A and is a natural isomorphism α : F → F ′.

Proposition 3.14. Suppose that we are given functors

C D E
F

G

H

K

such that F a G and H a K. Then HF a GK.

Proof. Suppose A ∈ C and B ∈ E . By definition, we have bijections

E(HFA,C) ∼= D(FA,KC) ∼= C(A,GKC)

The result then follows upon composing these bijections and realising the resulting bijection
is natural in both A and C.

Corollary 3.15. Suppose that we are given a commutative diagram

C D

E F

F

G H

K

of categories and functors between them. If all the functors in the diagram have left adjoints
then the diagram

C D

E F

of left adjoints also commutes up to natural isomorphism.

Proof. Suppose that F ′ a F,G′ a G,H ′ a H and K ′ a K so that the completed diagram is

C D

E F

F ′

G′

K′

H′

By Proposition 3.14, F ′H ′ a HF and G′K ′ a KG. But HF = KG and so the functor has
two left adjoints F ′H ′ and G′K ′. By Corollary 3.13, there must exist a natural isomorphism
between F ′H ′ and G′K ′ so we are done.
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Remark. Suppose we are given functors

A B C DF G

H

K

and a natural transformation α : G → H. Then we can define the following natural
transformations:

• αF : GF → HF with components given by (αF )A = αFA for all A ∈ obA.

• Kα : KG→ KH with components given by (Kα)B = KαB for all B ∈ obB.

Theorem 3.16. Let C and D be categories and G : D → C a functor. Then specifying a left
adjoint F : C → D for G is equivalent to specifying natural transformations η : 1C → GF
and ε : FG→ 1D such that the diagrams

F FGF

F

Fη

1F
εF

G GFG

G

ηG

1G
Gε

commute. In this case, we say that η and ε are the unit and counit of the adjunction
F a G respectively and they satisfy the triangular identities.

Proof. Suppose we are given an adjunction F a G. Let αA,B : D(FA,B) → C(A,GB) be
the correspondence between the hom-sets. Define ηA = αA,FA(1FA) and εB : α−1

GB,B(1GB).
We claim that η and ε are the desired natural transformations. We first show that η and ε
are natural in A and B respectively. It suffices to show this for η as ε is dual.

Fix f : A→ A′, we need to show that the diagram

GFA GFA′

A A′

GFf

ηA

f

ηA′

commutes. By naturality of α, the following two squares commute

D(FA, FA) D(FA, FA′)

C(A,GFA) C(A,GFA′)

D(FA,Ff)

αA,FA αA,FA′

C(A,GFf)

D(FA′, FA′) D(FA, FA′)

C(A′, GFA′) C(A,GFA′)

D(Ff,FA′)

αA′,FA′ αA,FA′

C(f,GFA′)

Chasing 1FA and 1FA′ around these diagrams gives

1FA Ff

ηA GF (f) ◦ ηA = αA,FA′(Ff)

1FA′ Ff

ηA′ ηA′ ◦ f = αA,FA′(Ff)

Combining these results gives GF (f) ◦ ηA = ηA′ ◦ f and so η is natural in A.
We must now check the triangular identities. Again, we shall show that one of the

identities holds, the other follows dually. First fix A ∈ ob C

1FA = α−1
A,FA(αA,FA(1FA) = α−1

A,FA(ηA) = α−1
A,FA(1GFA ◦ ηA)

Now suppose that g : Z ′ → Z is a morphism in C. By naturality of α in A the diagram
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C(Z,GB) C(Z ′, GB)

D(FZ,B) D(FZ ′, B)

C(g,GB)

α−1
Z,B

α−1
Z′,B

D(Fg,B)

commutes. Hence given f : Z → GB we have

α−1
Z′,B(f ◦ g) = α−1

Z,B(f) ◦ (Fg)

Now let Z ′ = A,Z = GFA,B = FA, f = 1GFA and g = ηA : A→ GFA. Then

α−1
A,FA(1GFA ◦ ηA) = εFA ◦ FηA

and so 1F = εF ◦ Fη and the triangular identity is satisfied.
Conversely, suppose that we are given natural transformations η : 1C → GF and ε :

FG → 1D satisfying the triangular identities. Given A ∈ ob C and B ∈ obD, we need to
find a bijection C(A,GB) ∼= D(FA,B) which is natural in both A and B.

We define Φ : C(A,GB)→ D(FA,B) by Φ(A
f−→ GB) = FA

Ff−→ FGB
εB−→ B. Similarly,

define Ψ : D(FA,B) by Ψ(FA
g−→ B) = A

ηA−→ GFA
Gg−→ GB. We claim that Φ and Ψ are

mutually inverse. Fix f ∈ C(A,GB). By the triangular identities and the naturality of η,
we have

Ψ(Φ(f)) = Ψ(εB ◦ (Ff)) = G(εB ◦ Ff) ◦ ηA = GεB ◦GFf ◦ ηA = GεB ◦ ηGB ◦ f = f

The other composition follows similarly. To show naturality in A, fix some f : A′ → A. We
need to show that the diagram

C(A,GB) C(A′, GB)

D(FA,B) D(FA′, B)

C(f,GB)

Φ Φ

D(Ff,B)

Let g ∈ C(A,GB). We have that

Φ(C(f,GB)(g)) = Φ(g ◦ f) = εB ◦ F (g ◦ f) = εB ◦ Fg ◦ Ff = C(Ff,B)(εB ◦ Fg) = C(Ff,B)(Φ(g))

as desired. Naturality in B follows from considering a similar square and the naturality of
ε.

Proposition 3.17. Let C and D be equivalent categories with the equivalence given by func-
tors F : C → D and G : D → C and natural isomorphisms α : 1C → GF and β : FG→ 1D.
Then there exist natural isomorphisms α′ : 1C → GF and β′ : FG → 1D satisfying the
triangular identities. In particular, F a G.

Proof. Let α′ = α and β′ = FG
β−1
FG−−→ FGFG

Fα−1
G−−−→ FG

β−→ 1D. We must show that α′ and
β′ satisfy the triangular identities. First note that

β′F ◦ Fα′ = β′F (Fα) = βF ◦ Fα−1
GF ◦ β

−1
FGF ◦ Fα

By the naturality of β, the diagram

FGFG FG

FG 1D

FGβ

βFG β

β
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commutes. Hence β(FGβ) = β(βFG). But β is monic and so FGβ = βFG. Similarly,
GFα = αGF . We then have

β′F ◦ Fα′ = β′F ◦ Fα = βF ◦ (FαGF )−1 ◦ β−1
FGF ◦ Fα

= βF ◦ (FGFα)−1 ◦ (FGFα) ◦ Fα
= βF ◦ (FGFα)−1 ◦ (FGFα) ◦ β−1

F

= 1F

For the other identity, we have

Gβ′ ◦ α′G = Gβ ◦ αG = Gβ ◦ (GFαG)−1 ◦ (GβFG)−1 ◦ αG
= Gβ ◦ (αGFG)−1 ◦ (GFGβ)−1 ◦ αG
= Gβ ◦ (GFGβ) ◦ (GFGβ)−1 ◦ (Gβ)−1

= 1G

Proposition 3.18. Let C D
F

G
be an adjoint pair with counit ε : FG→ 1D. Then

1. G is faithful if and only if ε is pointwise epic.

2. G is fully faithful if and only if ε is a natural isomorphism.

Proof.

Part 1: Suppose that εB is epic for all B ∈ obD. Let g, g′ : B → B′. We need to show that
if Gg = Gg′ then g = g′. Now, Gb and Gb′ correspond to gεB and g′εB respectively. We
thus have gεB = g′εB. But εB is epic and so g = g′ and G is faithful. The conditions in the
proof are all necessary and sufficient and so the backwards implication also follows.

Part 2: First suppose that εB is an isomorphism. By Part 1, G is faithful so it suffices to
show that G is full. To this end, suppose that g : GB → GB′ in C, we need to exhibit
an f : B → B′ in D such that Gf = g. g corresponds to some f : FGB → B′ under the
adjunction. Let f = f(εB)−1. Then

Gf = GεB′ ◦GFg ◦Gε−1
B

By naturality of ε, this equals g and we are done.
Conversely, suppose that G is full and faithful. Then GB

ηGB−−→ GFGB is of the form Gh

for some B
h−→ FGB. By the triangular identities, we have that (GεB)(ηGB) = 1GB and so

G(1B) = 1GB = (GεB)(Gh) = G(εBh)

whence 1GB = εBh. Conversely, hεB corresponds to ηGB under the adjunction. Passing back
through the adjunction, ηGB corresponds to 1FGB and so hε = 1FGB from which it follows
that εB is an isomorphism.

Definition 3.19 (?). Let C D
F

G
be an adjoint pair.

1. We say that F a G is a reflection if G is full and faithful.
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2. By a reflective subcategory of C, we mean a full subcategory C ′ for which the inclusion
C ′ ↪→ C has a left adjoint.

Example 3.20. Consider the inclusion functor G : AbGrp → Grp. Then G has a left
adjoint given by the functor F : Grp → AbGrp sending a group H to its Abelianisation
H ′ where H ′ is the derived subgroup of G. Then the adjunction F a G is reflective and
AbGrp is a reflective subcategory of Grp.

Example 3.21. Consider the inclusion functor G : TfAbGrp → AbGrp. Then G has a
left adjoint given by the functor F : AbGrp→ TfAbGrp which sends an abelian group H
to H/Hτ where Hτ is the torsion subgroup of H. Then the adjunction F a G is reflective
and TfAbGrp is a reflective subgroup of AbGrp.

Similarly, consider the inclusion functor G : TAbGrp → Abgrp. Then G has a right
adjoint given by the functor F : AbGrp → TAbGrp which sends an abelian group H
to its torsion subgroup Hτ . Then the adjunction G a F is coreflective and TAbGrp is a
coreflective subgroup of AbGrp.

Example 3.22. Consider the inclusion functor G : KHaus → Top. Then G has a left
adjoint given by the functor F : Top → KHaus which sends a topological space X to its
Stone-Čech compactification βX.1

4 Limits

Definition 4.1. Let J be a category. By a diagram of shape J in C, we mean a functor
D : J → C.

Example 4.2. Let J be the finite category given by the following representation:

· ·

· ·

Then a diagram of shape J in C is a commutative square in C. The objects D(j) with
j ∈ ob J are called the vertices of D and the morphisms D(α) with α ∈ mor J are called
the morphisms of D.

Example 4.3. Let J be the finite category given by the following representation:

· ·

· ·

Then a diagram of shape J in C is a square in C that is not necessarily commutative.

Definition 4.4 (?). Let J and C be categories and D : J → C be a diagram. We define a
cone over D to be a pair (A, (λj|j ∈ ob J)) with A ∈ C and λj : A→ D(j) such that

A

D(j) D(j′)

λj λj′

D(α)

1Stone and Čech both gave different constructions of the compactification and the only way to show that
they are the same is to show that they are left adjoint to the inclusion functor.
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commutes for every α : j → j′ in J . We say that A is the apex and λi are the legs of the
cone.

Lemma 4.5 (?). Let J and C be categories and A ∈ ob C. If 4A is the constant diagram
whose vertices are all A and whose edges are all 1A then cones over a diagram D : J → C
correspond to natural transformations α : 4A→ D.

Proof. Suppose we are given a diagram D : J → C and a cone over D given by the pair
(B, (λj|j ∈ ob J)) for some B ∈ C and λj : B → D(j). Define a natural transformation
α : 4A → D by defining αj : 4A(j) → D(j) to be λj. Then the fact that the naturality
square commutes follows immediately from the fact that 4A(j) = 4A(j′) for all j, j′ ∈ ob J
and the definition of a cone. The backwards implication follows from the same reasoning.

Definition 4.6 (?). Let D : J → C be a diagram and (A, (λj)) and (B, (µj)) cones over D.
We define a morphism of cones (A, (λj)) → (B, µj)) to be a morphism f : A → B such
that the diagram

A B

D(j)

f

λj µj

commutes.

Definition 4.7 (?). Let D : J → C be a diagram. We denote the category of all cones over
D together with the morphisms between them as Cone(D).

Proposition 4.8 (?). Let D : J → C be a diagram and consider the functor

4 : C → [J, C]
A 7→ 4A

Then Cone(D) = (4 ↓ D).

Proof. Suppose that (B, f) ∈ ob(4 ↓ D). Then B ∈ ob C and f is a natural transformation
f : 4B → D which is the same as a cone over D. Suppose that (B, f), (B′, f ′) ∈ ob(4 ↓ D)
and g : (B′, f)→ (B, f) is a morphism between them. Then g is a morphism g : B′ → B in
C such that the diagram

D 4B

4B′

f

f ′
4g

commutes. This diagram commutes if and only if for all j ∈ ob J the diagram

D(j) B

B′

fj

f ′j

g

which is exactly the same as a morphism between the cones (B′, f) and (B, f).
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Definition 4.9 (?). Let D : J → C be a diagram. Then a limit (dually colimit) of D is
a terminal object of Cone(D) (dually an initial object of Cocone(D)). We say a (co)limit
of D is finite (respectively small) if J is finite (respectively small).

Definition 4.10 (?). Let J and C be categories. Then we say that C has limits of shape
J if the functor 4 : C → [J, C] has a right adjoint.

Proposition 4.11 (?). Let J and C be categories. Then C has limits of shape J if and only
if every diagram D : J → C has a limit.

Proof. By Theorem 3.12, the functor 4 : C → [J, C] has a right adjoint if and only if for all
D ∈ ob C the category (4 ↓ D) = Cone(D) has a terminal object. This is exactly what it
means for a diagram D : J → C to have a limit.

Example 4.12. Suppose that J = ∅. Then for any category C there is a unique diagram
D : J → C. It is easy to see that (4 ↓ D) ∼= C and so a limit (dually colimit) for D is a
terminal object of C (dually initial object).

Example 4.13. Suppose J is the discrete category with two objects and D : J → C
is a diagram of shape J . Denote the two objects of this diagram by X1 and X2. Then
a limit for D is an object X1 × X2 equipped with morphisms λ1 : X1 × X2 → X1 and
λ2 : X1 × X2 → X2 such that for any object Y ∈ ob C and morphisms fi : Y → Xi there
exists a unique morphism Y → X1 ×X2 such that the diagram

Y X1 ×X2

Xi

fi λj

commutes. In other words, X1 ×X2 is a product. Dually, a colimit for D is referred to as
a coproduct.

Example 4.14. Let J be the category represented by · · Then a diagram D : J → C

is a parallel pair A B
f

g
. Then a cone over D is an object E and morphisms E

h−→ A

and E
k−→ B such that k = fh = gh. This is equivalent to an object E and a morphism

E
h−→ such that fh = gh. A limit for D is thus such a cone such that for any other cone

consisting of an object F and a morphism k with fk = gk, k factors through f uniquely:

E A B

F

h
f

g
k

In other words, a limit for D is an equaliser for the maps f and g. Dually, a colimit for D
is a coequaliser.

Example 4.15. Let J be the category represented by
·

· ·
Then a diagram D :

J → C is of the form
A

B C

f

g

. So a cone consists of an object D and morphisms
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D
h−→ A,D

l−→ C,D
k−→ B such that fh = l = gk. This is equivalent to a pair of morphisms

D
h−→ A and D

k−→ B completing the diagram to a commutative square. A terminal such
cone is called a pullback (or fibred product). Dually, a colimit for D is called a pushout.

Example 4.16. Let J = N be the category whose objects are natural numbers and mor-
phisms n1 → n2 are order relations n1 < n2. Then a diagram of shape J is of the form

A0 A1 A2 A3 · · ·ϕ0 ϕ1 ϕ2 ϕ3

A cocone under D is of the form

A0 A1 A2 A3 · · ·

A∞

ϕ0

f0

ϕ1

f1

ϕ2

f2

ϕ3

f3

An initial such cocone is one such that for any other object B and morphisms gi : Ai → B
there is a unique morphism ψ : A∞ → B such that the diagram

A∞ B

Ai

ψ

fi

gi

commutes. Dually, a limit for D is called an inverse limit.

Theorem 4.17 (?). Let C be a category.

1. If C has equalisers and all finite (respectively small) products then C has all finite
(respectively small) limits.

2. If C has pullbacks and a terminal object then C has all finite limits.

Proof.

Part 1: Given a diagram D : J → C with J finite (or small). We first form the products

P =
∏
j∈ob J

D(j), Q =
∏

α∈mor J

D(codomα)

Let πPj and πQα be the projection morphisms for the products P and Q respectively.

Define a parallel pair P Q
f

g
by

πQα f = πPcodomα : P → D(codomα)

πQα g = D(α)πPdomα : P → D(domα)→ D(codomα)

Now form the equaliser e : E → P of f and g. Set λj = πPj e : E → D(j). We claim that
(E, (λj)) is a limit cone for D.

We first show that (E, (λj)) is a cone over D. We need to show that for all α : j → j′

the diagram

E

D(j) D(j′)

λdomα λcodomα

D(α)
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commutes. By definition of f and g we have

D(α)(λdomα) = D(α)(πPdomαe) = πQα (ge) = πQα (fe) = πPcodomα(e) = λcodomα

as desired. Finally, we must show that (E, (λj)) is terminal in Cone(D). To this end,
let (C, (µj)) be another cone over D. By the universal property of products there exits a
unique morphism µ : C → P through which the µj factor: µj = πPj µ. Since the µj are legs
of a cone, it then follows that for all α : j → j′ we have πQα fµ = πQα gµ. This implies that
fµ = gµ and so µ equalisers f and g. By the universal property of equalisers, µ factors
uniquely through e as µ = eν for some ν : C → E. Such a ν is the desired unique morphism
of cones (C, (µj))→ (E, (λj)).

Part 2: By Part 1, it suffices to show that if C has pullbacks and a terminal object then
C has all finite products and equalisers. To this end, let 1 be a terminal object of C and
X1, X2 ∈ ob C. Consider the diagram

X1

X2 1

A pullback of this diagram completes it to a commutative square

C X1

X2 1

f2

f1

such that for any object D and morphism gi : D → Xi, there exists a unique morphism f
such that gi = fif . This is exactly what it means for C to be the product of A and B and
so C has binary products. We can iterate this process to obtain all finite products.

Now fix a parallel pair f, g : A→ B and consider the diagram

A

A A×B

(1A,f)

(1A,g)

A pullback of this diagram completes it to a commutative square

P A

A A×B

h

k (1A,f)

(1A,g)

This implies that 1Ah = 1Ak and fh = gk whence fh = gh. Since this must be universal
among such cones, P along with its legs must form an equaliser for f and g.

Definition 4.18 (?). Let C,D and J be categories, F : C → D a functor and D : J → C a
diagram.

1. We say that F preserves limits of shape J if given a limit cone (L, (λj)) for D the
cone (FL, (Fλj)) is a limit for FD : J → D.

2. We say that F reflects limits of shape J if given a cone (L, (λj)) over D such that
(FL, (Fλj)) is a limit for FD then (L, (λj)) is a limit for D.
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3. We say that F creates limits of shape J if given a limit cone (M, (µj)) for FD
there exists a cone (L, (λj)) over D whose image is isomorphic to (M, (µj)) under F
and any such cone is a limit for D.

Remark. If D has limits of shape J and F : C → D creates them then C also has them and
F both preserves and reflects them.

In Theorem 4.17, we can replace “C has” with either “C has and F : C → D preserves”
or “D has and F : C → D creates”.

Example 4.19. Consider the forgetful functor U : Grp → Set. Then U creates all small
limits. Indeed, U clearly creates all small products and equalisers. However, U does not
preserve colimits since it does not preserve the initial object. Indeed, the trivial group is
initial in Grp but the singleton set is not an initial object in Set.

Example 4.20. The forgetful functor U : Top → Set clearly preserves all limits and
colimits but doesn’t reflect them. Indeed, let J be the discrete category of two objects and
D : J → Top a diagram of shape J . Suppose that (L, (λj)) is a cone over D such that
(UL, (Uλj)) is a limit for UD. Then, clearly, UL is the product in Set. However, L is not
necessarily the product in Top as there are multiple topologies on X × Y that make the
projections continuous but are not the product topology (such as the box topology).

Example 4.21. The inclusion functor I : AbGrp → Grp reflects coproducts but doesn’t
preserve them. Indeed, the coproduct in AbGrp is A⊕B and in Grp it is the free product
A ? B which is never abelian unless A or B is the trivial group.

Proposition 4.22 (?). Let C,D and J be categories. If D has limits of shape J then [C,D]
has limits of shape J and the forgetful functor U : [C,D]→ Dob C creates them.

Proof. Suppose we are given a diagram D : J → [C,D]. Then D is the same thing as a
functor J × C → D. For all A ∈ ob C, Let (LA, (λj,A)) be a limit for the diagram D(·, A) :

J → D. Given f : A→ B, we claim that the composite LA
λj−→ D(j, A)

D(j,f)−−−→ D(j, B) is a
cone over D(·, B). We need to show that for all α : j → j′ the diagram

LA

D(j, B) D(j′, B)

D(j,f)◦λj D(j′,f)◦λj′

D(α,B)

commutes. In other words, we need to show that D(j′, f) ◦ λj′ = D(α,B) ◦ D(j, f) ◦ λj.
Since (LA, (λj,A)) is a cone, this is equivalent to showing that D(j, f) ◦ D(α,A) ◦ λj =
D(α,B) ◦D(j, f) ◦ λj. Note that the square

(j, A) (j,B)

(j′, A) (j′, B)

(1j ,f)

(α,A) (α,B)

(1j′ ,f)

commutes and so the induced square

D(j, A) D(j,B)

D(j′, A) (j′, B)

D(1j ,f)

D(α,A) D(α,B)

(1j′ ,f)
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commutes whence the claim is proven. It then follows that, given a limit (LB, (λj,B)) over
the diagram D(·, B), there is a unique morphism Lf : LA→ LB such that diagram

LA LB

D(j, A) D(j, B)

Lf

λj,A λj,B

D(j,f)

commutes. We claim that L : C → D is a functor. To this end, let f : A → B and
g : B → C. We need to show that L(gf) = (Lg)(Lf). We have that

λj,C ◦ Lg ◦ Lf = D(j, g) ◦D(j, f) ◦ λj,A = D(j, gf)λj,A = λj,C ◦ L(gf)

So L(gf) and Lg ◦ Lf are both factorisations of the cone (LA, (LA → D(j, C))) through
the limit LC and so they must be equal since LC is terminal. Hence L is a functor whence
(L, (λj,·)) is a cone over the diagram D : J → [C,D]. We now claim that this cone is a limit
for D. Let (M, (µj,· : M → D(j, ·))) be any other cone over D. Then (MA,µj,A) is a cone
over D(·, A) so there exists a unique νA : MA → LA such that λj,AνA = µj,A for all j. We
claim that ν is a natural transformation and so ν ∈ mor[C,D]. We need to show that for all
f : A→ B, the diagram

MA MB

LA LB

Mf

νA νB

Lf

commutes. But this is immediate from the uniqueness of µA, µ
′
B,Mf and Lf . Hence ν is

the unique factorisation of the µj,· through λj,· and so (L, (λj,·)) is a limit cone for D as
desired.

Lemma 4.23 (?). Let C be a category and f : A → B a morphism in C. Then f is a
monomorphism if and only if the commutative square

A A

A B

1A

1A f

f

is a pullback square.

Proof. Suppose that f is a monomorphism. Let

C A

A

g

h

be another cone. We need to show that there exists a unique morphism z : C → A such
that the diagrams

C A

A

z

g

1A

C A

A

z

h

1A
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commute. Since the cone with apex C completes the diagram to a commutative square such
that fg = fh and f is monic, we have that g = h. Hence g is the unique such morphism.

Conversely, suppose that the commutative square is a pullback square. Let

C A

A

g

h

be another cone. Then we have fg = fh and there exists a unique morphism such that the
diagrams

C A

A

z

g

1A

C A

A

z

h

1A

commute. Then g = 1Az = h and so f is monic.

Proposition 4.24 (?). Let C and D be categories and suppose that D has pullbacks. Then
α ∈ mor[C,D] is monic if and only if αA is monic for all A ∈ ob C.

Proof. Suppose that α ∈ mor[C,D]. Then α : F → G is monic if and only if the commutative
square

F F

F G

1F

1F α

α

is a pullback square. By 4.22, the forgetful functor U : [C,D]→ Dob C creates all pullbacks.
Hence the above diagram is a pullback square if and only if

FA FA

FA GA

1FA

1FA αA

αA

is a pullback square for all A ∈ ob C. This is equivalent to αA being a monomorphism for
all A ∈ ob C.

Theorem 4.25 (?). Let C and D be categories and G : D → C a functor. If G has a left
adjoint then G preserves all limits which exist in D.

Proof. Suppose that F a G is an adjunction and J is a category. Define a functor F J :
[J, C] → [J,D] by F J(D) = FD on objects and F J(α) = Fα on morphisms. We similarly
define GJ : [J,D]→ [J, C]. We first claim that F J a GJ . Let η : 1C → GF and η : FG→ 1D
be the unit and counit respectively of the adjunction F a G. We need to Simi exhibit natural
transformations ηJ : 1[J,C] → GJF J and εJ : F JGJ → 1[J,D] that satisfy the triangular
identities. Given S : J → C, define ηJS = η ◦ 1S : S → GFS. We first verify that this is a
natural transformation. We need to show that for all α : S → S ′, the diagram

S GFS

S ′ GFS ′

ηJS

α GFα

ηJ
S′
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But this is clear from the commutativity of the diagram

SA GFSA

S ′A GFS ′A

ηJSA

αA GFαA

ηJ
S′A

for all A ∈ ob J . Similarly, given S : J → D, we define εJS = ε ◦ 1S : FGS → S which
is natural in S. We now show that these natural transformations satsify the triangular
identities. We are required to show that the diagram

F J F JGJF J

F J

FJηJ

1
FJ

εJ
FJ

commutes. This is equivalent to showing that for all functors S : J → C and objects
A ∈ ob J the diagram

FSA FGFSA

FSA

FηSA

1FSA
εFSA

commutes. But this follows immediately from the fact that η satisfies the triangular identi-
ties. Hence F J a GJ . Now suppose that C andD have limits of shape J . Let4C : C → [J,C]
which takes an object C to the constant diagram of shape J on C. Similarly, define 4D. By
definition, C and D have limits of shape J if 4C and 4D have right adjoints. Suppose that
4C a lim←−

C
J

and 4D a lim←−
D
J

. We can then form the composite adjunctions 4D ◦F a G ◦ lim←−
D
J

and F J ◦ 4C a lim←−
C
J
◦GJ . We now claim that 4D ◦ F = F J ◦ 4C. Indeed, let C ∈ ob C.

Then F J ◦4C(C) = F4C(C). But this is the same as the constant diagram of shape J over
FC which is equal to 4D(FC). We thus see that G◦ lim←−

D
J

and lim←−
C
J
◦GJ are right adjoint to

the same functor and so they must be naturally isomorphic. In other words, for all functors
S : J → D we have

lim←−
C
J
(GJ) ∼= G(lim←−

D
J

(J))

But this is exactly what it means for G to preserve limits of shape J .

Lemma 4.26. Let C be a category. Then C has an initial object if and only if 1C : C → C
has a limit.

Proof. Let 0 be an initial object of C. Then for each A ∈ ob C, there is a unique morphism
λA : 0 → A. We claim that (0, (λA)) form a cone over 1C. We need to show that for all
f : A→ B the diagram

0

A B

λA λB

f

commutes. But this is exactly what it means for 0 to be initial. We now claim that (0, (λA))
is terminal in Cone(1C). Indeed, suppose that (L, (µA)) is another cone over 1C. Then
clearly, µ0 : L → 0 is the unique morphism such that µA = λAµ0 and so (0, (λA)) is
terminal.
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Conversely, suppose that 1C : C → C has a limit, say (L, (λA)). We claim that L is initial
in C. Suppose that f : L→ A for some A ∈ ob C. By definition, we have that the diagram

L

L A

λL λA

f

commutes. In particular, if f = λA then for all A ∈ ob C we have λAλL = λA. Since (L, (λA))
is terminal, it follows that λL = 1L whence f = λA and so L is initial in C.

Lemma 4.27. Let C,D and J be categories. Suppose that D has and G : D → C preserves
limits of shape J . Then for all A ∈ ob C, (A ↓ G) has limits of shape J and the forgetful
functor U : (A ↓ G)→ D creates them.

Proof. Fix A ∈ ob C and let D : J → (A ↓ G) be a diagram of shape J . For each j, we can
write D(j) as (UD(j), fj : A→ GUD(j)). We first claim that (A, (fj)) are a cone over the
diagram GUD : J → C. Suppose that we are given α : j → j′. We need to show that the
diagram

A

GUD(j) GUD(j′)

fj fj′

GUD(α)

commutes. But this follows immediately from the definition of a morphism in (A ↓ G).
Since D has limits of shape J , the diagram UD has a limit, say (L, (λj)). Since G preserves
limits of shape J , (GL, (Gλj)) is a limit for the diagram GUD. Hence there must exist a
unique morphism h : A→ GL such that the diagram

A GL

GUD(j)

h

fj Gλj

commutes for all j. Hence the λj are morphisms (L, h)
λj−→ (UD(j), fj) in (A ↓ G). We

claim that ((L, h), (λj)) form a cone over D. To this end, given α : j → j′, we must show
that the diagram

(L, h)

(UD(j), fj) (UD(j′), fj′)

λj λj′

(UD(α),fα)

commutes. However, this is immediate as U is faithful and (L, (λj)) form a cone over UD.
We now claim that ((L, h), (λj)) is a limit cone for D. To this end, let ((B, f), (µj)) be any
other cone over D. Then (B, (µj)) is a cone over UD. Since (L, (λj)) is a limit for UD,
there exists a unique k : B → L such that λjk = µj for all j. To show that k is a morphism
in (A ↓ G), we need to show that the diagram

A GB

GL

g

h
Gk
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commutes. But (GL, (Gλj)) is a limit for the diagram GUD and so the two ways round the

diagram must be equal. Hence there is a unique morphism ((B, f), (µj))
k−→ ((L, h), (λj))

such that λjk = µj whence ((L, h), (λj)) is terminal.

Theorem 4.28 (Primeval Adjoint Functor Theorem). Let C,D be categories. If D has all
limits and G : D → C preserves them then G has a left adjoint.

Proof. By Lemma 4.27, (A ↓ G) has all limits for all A ∈ ob C. By Lemma 4.26, (A ↓ G)
has an initial object for each A ∈ ob C. By Theorem 3.12, G therefore has a left adjoint.

Remark. This theorem is, however, too strong to be of use in an arbitrary category. Indeed,
if a category D has all limits as big as itself then it is a preorder2. To see this we may assume,
without loss of generality, that D is small so that | obD| = |morD| = κ for some cardinal
number κ. Suppose that D has products of size κ. Given a distinct parallel pair f, g : A→ B
we can form the product P =

∏
h∈morD B. Then

|D(A,P )| = |P ||A| =

(∣∣∣∣∣ ∏
h∈morD

B

∣∣∣∣∣
)|A|

= (|B|κ)|A| = (|B||A|)κ = (|D(A,B)|)κ ≥ 2κ

But this contradicts the fact that |morD| = κ. Hence f = g and D is a preorder.

Definition 4.29. Let D be a category. We say that D is complete if it has all small limits.

Theorem 4.30 (General Adjoint Functor Theorem). Let D be a locally small complete
category. Then a functor G : D → C has a left adjoint if and only if it preserves all
small limits and sastifies the solution-set condition: for all A ∈ ob C, there exists a set

{ (Bi, A
fi−→ GBi) | i ∈ I } of objects of (A ↓ G) such that any A

h−→ GC factors as A
fi−→

GBi
Gg−→ Gc for some i ∈ I and g : B → C.

Proof. First suppose that G has a left adjoint F . Then by Theorem 4.25, G preserves all
small limits. Let η : 1C → GF be the unit of the adjunction F a G. Given A ∈ ob C, we
claim that { (FA,A

ηA−→ GFA) } is a solution set for A. But this is clear from Corollary 3.12
which asserts that (FA, ηA) is initial in (A ↓ G).

Conversely, suppose that G : D → C preserves all small limits and for each A ∈ ob C,
there is a set of objects of (A ↓ G) satisfying the solution set condition - we shall refer to
such a set as weakly initial. By Lemma 4.27, (A ↓ G) is complete and clearly inherits the
local smallness of D. If we can show that (A ↓ G) has an initial object then Corollary 3.12
would show that G has a left adjoint.

To this end, let A be a complete locally small category with a weakly inital set of
objects {Si | i ∈ I }. We need to show that A has an initial object. First form the product
P =

∏
i∈I Si. Then P is also weakly initial. Indeed, the product comes equipped with

projections πi : P → Si for each i. Given A ∈ obA, there is a morphism Si
fi−→ A and so

fiπi is a morphism P → A. Now consider the diagram

P P

whose edges are all the endomorphisms of P in A. Form the limit a : I → P of this
diagram. Note that I (as a singleton set) is weakly initial since P is. We claim that, in
fact, I is initial. Suppose f, g : I → A are a distinct parallel pair for some A ∈ obA. Let

2A preorder is a category with at most one morphism between any two given objects
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b : E → I be an equaliser for them. Since P is weakly initial, there exists c : P → E. Hence

P
c−→ E

b−→ I
a−→ P is an edge of the diagram. Since 1P is also an edge of the diagram and

I is a limit, we must have that abca = 1Pa = a. Note that I is a generalised equaliser and
so a is monic. We then have that bca = 1I . In particular, b is split epic and since b is also
regular monic, it follows that b is an isomorphism. Hence f = g and so I is initial in A.

Example 4.31. Consider the forgetful functor U : Grp → Set. Suppose that we did not
know how to construct free groups. We could use the General Adjoint Functor Theorem
to construct a left adjoint for U . Indeed, Grp has and U preserves all small limits and
Grp is locally small. Given a set A and a function f : A → UG, f factors uniquely as
A → UG′ → UG where G′ is the subgroup of G generated by the set { f(a) | a ∈ A }.
Clearly |G′| ≤ max{ℵ0, |A|} and so the G′ induce a solution set.

Definition 4.32. Let C be a category and A ∈ ob C an object. By a subobject A′ of A, we
mean a monomorphism A′� A. We denote the full subcategory of (1F ↓ A) whose objects
are the subobjects of A by SubC(A).

Definition 4.33 (?). Let C be a category. We say that C is well-powered if SubC(A) is
equivalent to a small category for all A ∈ ob C. In other words, up to isomorphism, each
object of C has only a set of subobjects.

Lemma 4.34. Let C be a category and suppose we are given a pullback square

P A

B C

k

h f

g

of objects and morphisms in C with f monic. Then h is monic.

Proof. Suppose we are given a parallel pair x, y : D → P such that hx = hy. Then

fkx = ghx = ghy = fky

Since f is a monomorphism, we have that kx = ky. From this it follows that x = y since
they are both factorisations of the cone of apex D through the pullback.

Theorem 4.35 (Special Adjoint Functor Theorem). Let C and D be locally small categories
and assume that D is complete, well-powered and has a coseperating set. Then a functor
G : D → C has a left adjoint if and only if G preserves all small limits.

Proof. The forward direction is simply Theorem 4.25.
Conversely, suppose that G preserves all small limits. We first claim that (A ↓ G) has all

the properties that we have assumed for D. By Lemma 4.27, (A ↓ G) has all small limits and
inherits the local smallness of D. (A ↓ G) is well powered since subobjects of (B, f) are in
one to one correspondence with subobjects B′� B such that f factors through GB′� GB.
Finally, (A ↓ G) has a coseperating set. Indeed, if {Si | i ∈ I } is a coseperating set for D
then { (Si, f) | i ∈ I, f : A→ GSi } is a coseperating set for (A ↓ G). To see this, suppose
that g, g′ : (B, f)→ (B′, f ′) are two distinct morphisms. Then there exists h : B′ → Si for
each i such that hg 6= hg′ and then h is a morphism (B′, f) → (Si, (Gh)f ′) in (A ↓ G). If
we can show that (A ↓ G) has an initial object then we are done by Corollary 3.12.

To this end, suppose that A is complete, locally small, well-powered and has a coseper-
ating set {Si | i ∈ I }. We first form the product P =

∏
i∈I Si. Consider the diagram
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P ′

P ′′ P

...

P (n)

whose edges are a (possibly infinite) representative set of subobjects of P . Let I be a
limit for this diagram. By Lemma 4.34, each leg I → P · is monic and so there exists a
monomorphism I � P . This clearly implies that I is the least subobject of P since any
other monomorphism into the P− would have to factor through I. We claim that I is initial.

We first show the uniqueness property. Suppose that f, g : I → A is a parallel pair. Let
e : E → I be the equaliser of f and g. Then since e is monic, E is a subobject of I. But I
has no proper subobjects and so e must be an isomorphism and f = g.

Now fix A ∈ obA, we need to show that there exists a morphism I → A. We form the
product

Q =
∏

i,f :A→Si

Si

The morphism h : A → Q defined by πi,fh = f is clearly monic since the Si form a
coseperating set. We also have k : P → Q defined by πi,fk = πi. Forming the pullback of h
and k we have

B A

P Q

m

l h

k

By Lemma 4.34, l is monic and hence isomorphic to an edge of the diagram defining I.
Hence I � P must factor through l. In particular, there exists a morphism I → B which,
composed with m, gives us a morphism I → A.

Example 4.36. The Stone-Čech compactification is a special case of the Special Adjoint
Functor Theorem. Indeed, consider the inclusion functor F : KHaus→ Top. KHaus has
and F preserves all small products by Tychonoff’s Theorem. F also preserves equalisers.
Indeed, given a parallel pair f, g : X ⇒ Y where Y is Hausdorff, the equaliser E is a closed
subspace of X. To see this, let (f, g) : X → Y × Y denote the continuous map that sends x
to (f(x), g(x)). Then E = (f, g)−1(4Y ) where 4Y is the diagonal. Since in any Hausdorff
space the diagonal is closed, it follows that E is closed in X.

KHaus is also clearly well-powered as subobjects of X correspond up to isomorphism
to closed subspaces of X. Finally, KHaus has a coseperator [0, 1] by Urysohn’s Lemma.
Therefore, the Special Adjoint Functor Theorem implies that F has a left adjoint.

5 Monads

Definition 5.1 (?). Let C be a category. A monad T on C is a triple (T, η, µ) where
T : C → C is a functor and η : 1C → T and µ : TT → T are natural transformations such
that the diagrams
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T TT T

T

Tη

1T

1©
µ

ηT

1T

2©
TTT TT

TT T

µT

3©Tµ µ

µ

Example 5.2. Let C and D be categories. Suppose that F a G is an adjunction of C and
D with unit η and counit ε. Then T = (GF, η,GεF ) is a monad on C.

Example 5.3. Let M be a monoid and consider the functor M × (·) : Set → Set which
takes a set A and sends it to the cartesian product M × A. Then M × (·) has a monad
structure given by the natural transformations

ηA(a) = (1M , a)

µA(m,m′, a) = (mm′, a)

The fact that this is a monad follows directly from the axioms of a monoid.

Definition 5.4. Let C be a category and T = (T, η, µ) a monad on C. By a T-algebra, we
mean a pair (A,α) where A ∈ ob C is an object and α : TA → A is a morphism satisfying
the commutative diagrams

A TA

A

ηA

1A

4©
α

TTA TA

TA A

5©

Tα

µA α

α

A homomorphism of T-algebras f : (A,α) → (B, β) is a morphism f : A → B such that
the diagram

TA TB

A B

Tf

α 6© β

f

commutes. We write CT for the category of all T-algebras together with their homomor-
phisms.

Lemma 5.5. Let C be a category and T a monad on C. Then the forgetful functor GT :
CT → C has a left adjoint F T and the adjunction F T a GT induces the monad T.

Proof. Suppose that T = (T, η, µ) is a monad on C. We shall define a functor F T : C → CT
as follows: On objects A ∈ ob C we set F TA = (TA, µA). This is clearly an algebra by

diagrams 2. and 3. On morphisms we set F T(A
f−→ B) = Tf which is a homomorphism by

the naturality of µ. Note that GTF T = T and we already have a natural transformation
η : 1C → T from the definition of the monad. This gives us the unit of the claimed
adjunction. We define the counit ε : F TGT → 1CT by ε(A,α) = α : TA → A which is a
morphism α : (TA, µ) → (A,α) in CT by diagram 5. and this transformation is natural
by diagram 6. The triangular identities follow immediately from diagrams 4. and 1. so
F T a GT is an adjunction.

Definition 5.6. Let C be a category and T = (T, η, µ) a monad on C. We define the Kleisli
category, denoted CT to be the one whose objects are ob C and whose morphisms A 99K B

are morphisms A→ TB in C. Given A ∈ ob CT, the identity morphism A
1A
99K A is A

ηA−→ TA.

The composite A
f
99K B

g
99K C is given by A

f−→ TB
Tg−→ TTC

µC−→ TC.
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Remark. In order for this to actually be a category, we must check that composition with
the identity preserves a morphism and that the composition of morphisms is associative. To

this end, let A
f
99K B be a morphism in CT. Then by the naturality of η and diagram 2 we

have

A
1A
99K A

f
99K B = A

ηA−→ TA
Tf−→ TTB

µB−→ TB

= A
f−→ TB

ηTB−−→ TTB
µB−→ TB

= A
f−→ TB

Furthermore, let A
f
99K B

g
99K C

h
99K D be a composition of morphisms in CT. By diagram

3 and the naturality of µ, we have

(hg)f = A
f−→ TB

T (hg)−−−→ TTD
µD−→ TD

= A
f−→ TB

Tg−→ TTC
TTh−−→ TTTD

TµD−−→ TTD
µD−→ TD

= A
f−→ TB

Tg−→ TTC
TTh−−→ TTTD

µTD−−→ TTD
µD−→ TD

= A
f−→ TB

Tg−→ TTC
µC−→ TC

Th−→ TTD
µD−→ TD

= A
gf−→ TC

Th−→ TTD
µD−→ TD

= h(gf)

Proposition 5.7. Let C be a category and T = (T, η, µ) a monad on C. Then there exists
an adjunction FT a GT in CT which induces T.

Proof. We define FT on objects to be FTA = A and on morphisms by FT(A
f−→ B) = A

f−→
B

ηB−→ TB. Then FT clearly preserves identities. To see that it is a functor, note that

(FTg)(FTf) = A
f−→ B

ηB−→ TB
Tg−→ TC

TηC−−→ TTC
µC−→ TC

= A
f−→ B

g−→ C
ηC−→ TC

= FT(gf)

where we have used diagram 1 and the naturality of η.

Conversely, define GT on objects by GTA = TA and on morphisms by GT(A
f
99K B) =

TA
Tf−→ TTB

µB−→ TB. By diagram 1, this preserves identities. To see that it is a functor,
note that

(GTg)(GTf) = TA
Tf−→ TTB

µB−→ TB
Tg−→ TTC

µC−→ TC

= TA
Tf−→ TTB

TTg−−→ TTTC
µTC−−→ TTC

µC−→ TC

= TA
Tf−→ TTB

TTg−−→ TTTC
TµC−−→ TTC

µC−→ TC

= GT(gf)

It is obvious that GTFTA = TA and

GTFT(A
f−→ B) = TA

Tf−→ TB
TηB−−→ TTB

µB−→ TB = Tf

by diagram 1. It then follows that GTFT = T . We already have a unit for the adjunction

η : 1C → GTFT. We define the counit FTGTA
εA−→ A to be TA

1TA−−→ TA. To verify the
naturality of ε, consider the diagram
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FTGTA FTGTB

A B

FTGTf

εA εB

f

We have that

εB ◦ FTGTf = FTGTA
FTGTf
99K FTGTB

εB
99K B

= FTGTA
FTGTf−−−−→ TFTGTB

TεB−−→ TTB
µB−→ TB

= TA
Tf−→ TTB

1TTB−−−→ TTB
µB−→ TB

= TA
1TA−−→ TA

Tf−→ TTB
µB−→ TB

= f ◦ εA

and so ε is a natural transformation. We next check the triangular identities. By diagram
2, we have

GTA
ηFTA−−−→ GTFTGTA

GεA−−→ GTA = TA
ηA−→ TTA

1TTA−−−→ TTA
µA−→ TA

= TA
ηA−→ TTA

µA−→ TA

= 1TA

Dually we have

FTA
FTηA
99K FTGTFTA

εFTA
99K FTA = FTA

FηA−−→ TFTGTFTA
TεFTA−−−→ TTFA

µFTA−−−→ FTA

= A
FTηA−−−→ TTA

1TTA−−−→ TTA
µA−→ A

= A
FTηA−−−→ TTA

µA−→ A

= A
ηA−→ TA

ηTA−−→ TTA
µA−→ A

= A
ηA−→ TA

= FTA
1FTA
99K FTA

Finally, note that

GTεFTA = TTA
1TTA−−−→ TTA

µA−→ TA = µA

and hence the adjunction induces the monad T.

Definition 5.8. Let C be a category and T = (T, η, µ) a monad on C. We define a category,

denoted Adj(T), whose objects are adjunctions
(
C D

)F

G
inducing T and morphisms(

C D
)F

G
→

(
C ′ D′

)F ′

G′
are functors K : D → D′ such that KF = F ′ and

G′K = G.

Theorem 5.9. Let C be a category and T = (T, η, µ) a monad on C. Then the Kliesli
adjunction FT a GT is initial and the T-algebra adjunction F T a GT is terminal in Adj(T).

Proof. We shall first show that the T-algebra adjunction is terminal in Adj(T). To this

end, fix an adjunction
(
C D

)F

G
in Adj(T). We want to exhibit the existence of a
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unique morphism (F a G)
K−→ (F T a GT). We first exhibit a functor K : D → CT such

that KF = F T and GTK = G. Define the algebra comparison functor K : D → CT by
KB = (GB,GεB) where ε is the counit of the adjunction F a G. On morphisms we set

K(B
g−→ B′) = Gg. We must verify that this is well-defined and functorial. KB = (GB,GεB)

is indeed a T-algebra as GεB is a morphism TGB → GB, diagram 4 is satisfied from the
triangular identities and diagram 5 and 6 follow from the naturality of ε. Furthermore,
the functoriality of K follows from functoriality of G. Since GT : CT → C is the forgetful
functor, it is clear that GTK = G. Moreover, KFA = (GFA,GεFA) = (TA, µA) = F TA

and KF (A
f−→ B) = GFf = Tf = F Tf as desired.

To show uniqueness, suppose that K ′ : D → CT is another functor satisfying GTK ′ = G
and K ′F = F T. From this we see that K ′B is of the form (GB, βB) for some algebra
structure βB : GFGB → GB and that βFA = µA. Since F a G induces T we also have
βFA = µA = GεFA for all A. Now consider the diagram

GFGFGB GFGB

GFGB GB

GFGεB

µGB βB

GεB

which commutes since GεB is a T-algebra homomorphism. Similarly, the diagram with
βB replaced by GεB is also commutative. We thus have that (GεB) ◦ (GFGεB) = (βB) ◦
(GFGεB). But GFGεB is split epic by the triangular identities and so GεB = βB whence
K = K ′ and F T a GT is terminal.

We now show that the Kleisli adjunction is initial in Adj(T). That is, we want to exhibit

the existence of a unique morphism (FT a GT)
K−→ (F a G). Define the Kleisli comparison

functor by KA = FA and K(A
f
99K B) = FA

Ff−→ FGFB
εFB−−→ FB. We shall first verify

that this is functorial. Suppose we are given a composition A
f
99K B

g
99K C. Then by the

naturality of ε

K(A
f
99K B

g
99K C) = FA

Ff−→ FGFB
FGFg−−−→ FGFGFC

FGεFC−−−−→ FGFC
εFC−−→ FC

= FA
Ff−→ FGFB

FGFg−−−→ FGFGFC
εFGFC−−−−→ FGFC

εFC−−→ FC

= FA
Ff−→ FGFB

εFB−−→ FB
Fg−→ FGFC

εFC−−→ FC

= (Kg)(Kf)

We next claim that K is a morphism (FT a GT)
K−→ (F a G). To this end, we must show that

KFT = F and GK = GT. For the latter equality, observe that GKA = GFA = TA = GTA

and GK(A
f
99K B) = TA

Tf−→ TTB
µB−→ TB = GTf as desired. For the former equality, we

have that KFTA = FA and

KFT(A
f−→ B) = FA

Ff−→ FB
FηB−−→ FGFB

εFB−−→ FB

= FA
Ff−→ FB

as desired and so K is a morphism in Adj(T). It remains to show that K is unique. Suppose
that K ′ : CT → D is any other morphism satisfying K ′FT = F and GK ′ = GT. Clearly,
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K ′A = FA = KA for all A. Furthermore,

GK ′(TA
1TA
99K A) = GT(TA

1TA
99K A)

= TTA
T1TA−−−→ TTA

µA−→ TA

= TTA
µA−→ TA

= GFGFA
GεFA−−−→ GFA

and so K ′(TA
1TA
99K A) = εFA. Now note that given any morphism A

f
99K B we can write it

in the form A
FTf
99K TB

1TB
99K B and so

K ′(A
f
99K B) = K ′(A

FTf
99K TB

1TB
99K B)

= K ′(TB
1TB
99K B)K ′(A

FTf
99K TB)

= (εFB) ◦ (K ′FTf )

= (εFB) ◦ (Ff)

= Kf

and so K = K ′ and the Kleisli adjunction is initial in Adj(T).

Theorem 5.10. Let C and J be categories and T = (T, η, µ) a monad on C. Then

1. The forgetful functor G : CT → C creates all limits which exist in C.

2. If T preserves colimits of shape J then G : CT → C creates them.

Proof. Let D : J → CT be a diagram and write D(j) = (GD(j), δj) for all j ∈ J . Let

(L, (λj : L → GD(j))) be a limit cone for GD. Observe that the composites TL
Tλj−−→

TGD(j)
δj−→ GD(j) form a cone over GD. Indeed for all α : j → j′, the diagram

TL

TGD(j) TGD(j′)

GD(j) GD(j′)

Tλj Tλj′

TGD(α)

δj δj′

GD(α)

commutes since the D(α) are T-algebra homomorphisms and L is a cone over GD. This
implies that there exists a unique λ : TL→ L such that the diagram

TL L

TGD(j) GD(j)

λ

Tλj λj

δj

commutes. We now claim that λ is an algebra structure. To this end, we need to first show
that the diagram

42



L TL

L

ηL

1L
λ

commutes. By the naturality of η and the fact that D(j) is a T-algebra, we have that for
all j

λj ◦ λ ◦ ηL = δj ◦ Tλj ◦ ηL = δj ◦ ηGD(j) ◦ λj = 1GD(j) ◦ λj = λj

We see that both λ ◦ ηL and 1L are factorisations of the limit cone L through itself and so
they must be equal. We must next show that the diagram

TTL TL

TL L

Tλ

µL λ

λ

commutes. On one hand, we have that

λj ◦ λ ◦ Tλ = δj ◦ Tλj ◦ Tλ
= δj ◦ T (λj ◦ λ)

= δj ◦ T (δj ◦ Tλj)
= δj ◦ Tδj ◦ TTλj

On the other hand, the naturality of µ implies that

λj ◦ λ ◦ µL = δj ◦ Tλj ◦ µL
= δj ◦ µGD(j) ◦ TTλj

Since the δj are algebra structures, we have that δj ◦ Tδj = δj ◦ µGD(j) and so λj ◦ λ ◦ Tλ =
λj ◦ λ ◦ µL. These are both factorisations of the same cone through the limit so we must
have that they are equal.

Finally, we claim that ((L, λ), (λj)) is a limit for the diagram D. It is clearly a cone
as it’s image under G is a cone over GD(j) and the λj are T-algebra homomorphisms. To
show that it is terminal, suppose we are given another cone ((M, ν), (νj)) over D(j). Then
its image under G admits a unique factorisation νj = λjϕ for some morphism ϕ : M → L.
It suffices to show that ϕ is a homomorphism of T-algebras. In other words, we must show
that the diagram

TM TL

M L

Tϕ

ν λ

ϕ

On one hand we have

λj ◦ λ ◦ Tϕ = δj ◦ Tλj ◦ Tϕ
= δj ◦ T (λj ◦ ϕ)

= δj ◦ T (νj)

On the other hand, we have

λj ◦ ϕ ◦ ν = νj ◦ ν

But νj is a T-algebra homomorphism and so these must be equal. They are thus two
factorisations of the same cone through the limit whence λ ◦ Tϕ = T (νj) as desired.
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Definition 5.11. Let C and D be categories. Given an adjunction F a G between them,
we say that (F a G) is monadic if the algebra comparison functor K : D → CT is part of
an equivalence of categories where T is the monad induced by (F a G). Moreover, we say
that a functor G : D → C is monadic if it has a left adjoint F and F a G is monadic.

Lemma 5.12. Let C and D be categories and F a G an adjunction between them with counit
ε inducing a monad T. Suppose that for all T-algebras (A,α), the pair

FGFA FA
Fα

εFA

has a coequalizer in D. Then the comparison functor K : D → CT has a left adjoint L.

Proof. Given a T-algebra (A,α), define L(A,α) to be the coequaliser of the parallel pair

FGFA FA
Fα

εFA

Then, given any homomorphism of T-algebras f : (A,α) → (B, β) we have the following
diagram

FGFA FA L(A,α)

FGFB FB L(B, β)

FGFf

Fα

εFA

Ff Lf

Fβ

εFB

By the universal property of coequalisers, there exists a unique morphism Lf : L(A,α) →
L(B, β) extending the diagram to a commutative diagram. The uniqueness of this morphism
ensures that L is functorial.

To show that L a K, it suffices to show that D(L(A,α), B) ∼= CT((A,α), KB). Observe
that morphisms L(A,α)→ B are in one-to-one correspondence with morphisms f : FA→ B
that coequalise Fα and εFA. In other words, f ◦ Fα = f ◦ εFA. But such morphisms
correspond to morphisms f ′ : A → GB such that f ′α = Gf . Since f = εB ◦ Ff ′ we
then have that f ′α = GεB ◦ GFf ′. But this is exactly what it means for f ′ to be a T-
algebra homomorphism (A,α)→ (GB,GεB) = KB. We omit the proof that these natural
transformations are natural in (A,α) and B.

Definition 5.13. Let C be a category.

1. We say that a parallel pair f, g : A⇒ B of morphisms in C is reflexive if there exists
a morphism r : B → A such that fr = gr = 1B.

2. By a split coequaliser diagram, we mean a diagram of the form

A B C
f

g

t

h

s

such that hf = hg, hs = 1C , gt = 1B and ft = sh.

3. Let G : D → C be a functor. We say that a parallel pair f, g : A⇒ B in D is G-split
if there exists a split coequaliser
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GA GB C
Gf

Gg

t

h

s

in C.

Lemma 5.14. Let C be a category. Then any split coequaliser in C is a coequaliser.

Proof. Suppose we are given a split coequaliser diagram

A B C
f

g

t

h

s

Let k : B → D be any other morphism satisfying kf = kg. We claim that k must factor
through h. Indeed, k = kgt = kft = ksh and is the unique such factorisation as h is split
epic.

Theorem 5.15 (Precise Monadicity Theorem). Let C and D be categories. Then G : D → C
is monadic if and only if G has a left adjoint and creates coequalisers of G-split pairs.

Proof. Assume that G is monadic and let T = (T, η, µ) be the monad induced by the
adjunction. Then by definition it has a left adjoint so we just need to show that G creates
coequalisers of G-split pairs. Since D ∼= CT, it suffices to show that the forgetful functor
GT : CT → C creates coequalisers of GT-split pairs. To this end, suppose that f, g : (A,α)→
(B, β) is a G-split pair and let

A B C
f

g

t

h

s

be a split coequaliser diagram for it in C. Any functor will clearly preserve a split coequaliser
and so, in particular, T preserves split coequalisers. Theorem 5.10 then implies that GT

creates coequalisers of G-split pairs.
Conversely, suppose that G has a left adjoint and creates coequalisers of G-split pairs.

Let T = (T, η, µ) be the monad induced by the adjunction F a G. We want to show that
D ∼= CT. We do this by constructing a weak inverse L : CT → D to the comparison functor
K : D → CT. Fix a T-algebra (A,α). Observe that the parallel pair

FGFA FA
Fα

εFA

is G-split since

GFGFA GFA A
GFα

GεFA

ηGFA

α

ηA

is a split coequaliser. Indeed, α◦ (GFα) = α◦ (GεFA) by diagram 5, α◦ηA = 1A by diagram
4, (GεFA) ◦ ηGFA = 1GFA by the triangular identities and (GFα) ◦ (ηGFA) = ηA ◦ α by the
naturality of η. By hypothesis, G creates coequalisers of G-split pairs so Lemma 5.12 implies
that K has a left adjoint L : CT → D. We claim that KL

∼−→ 1CT and LK
∼−→ 1D.

For the former, fix a T-algebra (A,α). Then KL(A,α) = (GL(A,α), GεL(A,α)) where
L(A,α) is the coequaliser in the diagram

FGFA FA L(A,α)
Fα

εFA

θ
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Observe that

GFGFA GFA GL(A,α)
GFα

εGFA

Gθ

is also a coequaliser diagram since G creates and, in particular, preserves limits. By unique-
ness of limits, we must have that Gθ = α and GL(A,α) ∼= A. We must now show that
GεL(A,α) = α. Note that it suffices to show that θ = εL(A,α). By definition, θ coequalises
the maps Fα and εFA and so θ ◦ Fα = θ ◦ εFA. By the naturality of ε, it follows that
θ ◦ Fα = εL(A,α) ◦ FGθ = εL(A,α) ◦ Fα. Composing both sides on the right by F (ηA) and
using diagram 5 yields θ = εL(A,α) as desired.

To show that LK
∼−→ 1D, let B ∈ obD. Then LKB = L(GB,GεB). We have two

coequaliser diagrams

FGFGB FGB L(GB,GεB)
FGεB

εFGB
FGFGB FGB B

FGεB

εFGB

εB

as FGεB and εFGB is a G-split pair. We must therefore have that L(GB,GεB) ∼= B.

Theorem 5.16 (Crude Monadicity Theorem). Let C,D be categories and G : D → C a
functor. Then G is monadic if G has a left adjoint, preserves reflexive coequalisers and
reflects isomorphisms.

Proof. Follows the same proof as the backwards direction of the Precise Monadicity Theo-
rem.

Lemma 5.17. Suppose that

A1 B1 C1

f1

g1

r1

h1 A2 B2 C2

f2

g2

r2

h2

are reflexive coequaliser diagrams in Set. Then

A1 × A2 B1 ×B2 C1 × C2

f1×f2

g1×g2

h1×h2

is a coequaliser diagram.

Proof. Without loss of generality, we may assume that Ci = Bi/ ∼ where bi ∼ b′i if and only
if there exists a chain of elements bi = x1, . . . , xn = b′i such that each {xj, xj+1 } is of the
form { fi(yj), gi(yj) } for some yj ∈ Ai. If we have chains linking b1 to b′1 and b2 to b′2 then
we can link (b1, b2) by first linking it to (b′1, b2).

Example 5.18. The forgetful functors Grp→ Set,Rng→ Set and ModR → Set are all
monadic. Indeed, suppose we are given a reflexive coequaliser

A B C

f

g
r

h

where A and B have some finitary algebraic structure provided by an n-ary operation α.
Consider the diagram
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An B Cn

A B C

fn

αA

gn

αB

rn
hn

αC

f

g

r
h

So C inherits a finitary algebraic structure making h into a homomorphism and C a co-
equaliser in the corresponding algebraic category.

Example 5.19. Any reflection is monadic. Indeed, suppose that we are given a reflective
full subcategory G : D → C. By definition, G has a left adjoint so we just need to show that
G creates split coequalisers. To this end, suppose that we have a parallel pair f, g : A⇒ B
in D that has a split coequaliser diagram

A B C
f

g

t

h

s

Clearly t ∈ morD whence ft = sh ∈ morD. Observe that shs = s1C = s = 1Bs and so s is
an equaliser for sh and 1B in C. Since the inclusion functor creates all limits in C, we must
have that, up to isomorphism, (C, h) is a coequaliser in D.

Example 5.20. Consider the category tfAbGrp of torsion free abelian groups. The forget-
ful functor tfAbGrp → AbGrp is monadic and so is the inclusion tfAbGrp → AbGrp
as it is a reflection. However, the composite tfAbGrp → AbGrp → Set is not monadic
since the monad it induces on Set is isomorphic to that induced by AbGrp → Set so its
category of algebras is equivalent to AbGrp.

Example 5.21. The forgetful functor Top → Set isn’t monadic. It has a left adjoint but
the induced monad is (1Set, 11Set

, 11Set
) and so its category of algebras is isomorphic to Set.

Example 5.22. The forgetful functor U : KHaus→ Set is monadic. It has a left adjoint

Set
D−→ Top

β−→ KHaus where β is the Stone-Čech compactification. It thus suffices to show
that U creates coequalisers of U -split pairs. Let f, g : X ⇒ Y be a parallel pair in KHaus
such that

UX UY Z
f

g

h

t s

Define an equivalence relation on UY with y1 ∼ y2 if h(y1) = h(y2). We claim that UY/ = Z
equipped with the quotient topology is compact Hausdorff with h continuous. h is the
canonical surjective mapping so it is clearly continuous. Furthermore, the quotient of a
compact space is always compact. Hence it remains to show that Z is Hausdorff. By
a result from point-set topology, if R ⊆ Y × Y is an equivalence relation then Y/R is
Hausdorff if and only if R is closed in Y × Y . Hence it suffices to show that

R = { (y, y′) ∈ Y | h(y) = h(y′) }

is closed in Y ×Y . But h coequalises f and g so (y, y′) is of the form (g(x), g(x′)) such that

f(x) = f(x′) for some (x, x′) ∈ X ×X. Hence R is the image under X ×X g×g−−→ Y × Y of

S = { (x, x′) | f(x) = f(x′) }
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Observe that S is closed in X since f is continuous and Y is Hausdorff and so S is compact
whence R is compact. This implies that R is closed as desired.

Example 5.23. The contravariant power-set functor P ∗ : Setop → Set is monadic. Indeed,
it self is adjoint and it reflects isomorphisms so it suffices to show that it sends coreflexive
equalisers in Set to reflexive coequalisers. Let

E A Be

f

g

r

be a coreflexive equaliser diagram. In other words, rf = rg = 1A. Observe that if f(a) =
g(a′) then a = a′ = r(f(a)) and so the images of f and g coincide on the image of E. The
same argumentation also shows that f and g are injective. Now consider the diagram

PB PA PE
P ∗f

P ∗g

P ∗e

Pg Pe

We claim that this is a split coequaliser diagram. Since P ∗ is a functor, we have that
(P ∗e)(P ∗f) = (P ∗e)(P ∗g). Moreover, since e and g are monic, we have (P ∗e)(Pe) = 1PE
and (P ∗g)(Pg) = 1PA. Finally,

(P ∗f)(Pg)(A′) = A′ ∩ im(e) = (Pe)(P ∗e)(A′)

for all A′ ⊆ A.

Definition 5.24. Let C and D be categories and F a G an adjunction between them.
Suppose that D has reflexive coequalisers. By the monadic tower of F a G, we mean the
diagram

(CT)S

D CT

C

L′
K′

K

G
L

F

where T is the monad induced by F a G, S is the monad induced by K a L and L(n) a K(n)

is the adjunction comprised of the algebra comparison functor and its left adjoint. We say
that F a G has monadic length n if we reach an equivalence after n steps.

Example 5.25. If G : D → C is a reflective full subcategory with left adjoint F then F a G
has monadic length 2.

Example 5.26. Let D be the left adjoint to the forgetful functor U : Top → Set. Then
D a U has monadic length ∞.
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6 Regular Categories

Definition 6.1. Let C be a category and (A
f−→ B) ∈ morD a morphism. By the image of

f , we mean the smallest subobject of B through which f factors if it exists. We say that C
has images if every f ∈ mor C has an image. Furthermore, we say that f is a cover if its

image is 1B. We shall write A
f
−_ B to indicate that f is a cover.

Definition 6.2 (?). Let C be a category and A
f−→ B an epimorphism. We say that f is a

strong epimorphism if given a commutative square

A C

B D

g

f k
t

h

with k monic, there exists t : B → C such that g = tf and h = kt.

Lemma 6.3. Let C be a category with all finite limits. Then the covers in C coincide with
strong epimorphisms.

Proof. Suppose that f is strong epic. We claim that f is a cover. To this end, suppose that
f factors through a subobject of B, say f = gh where g : C � B is monic. It suffices to
show that, in fact, g is an isomorphism. Consider the diagram

A C

B B

h

f g

1B

Since f is strong epic, there exists a t : B → C such that 1B = gt. This means that g is
split epic. But it is also monic whence g is an isomorphism as desired.

Conversely, suppose that f : A _ B is a cover. We first claim that f is epic. To this
end, suppose that gf = hf for a parallel pair g, h : B ⇒ C. Since C has all finite limits, it
has equalisers and so f factors through the equaliser e : E → B of g and h, say f = ze for
some z : E → B. But every equaliser is monic and f is a cover so we must have that e is
an isomorphism whence g = h and f is epic.

Now suppose that we are given the diagram

A C

B D

g

f k

h

with k monic. We need to exhibit a t : B → C that fills in the diagonal of this diagram. We
may form the pullback

P C

B D

n

m k

h

Since monics are stable under pullback, we have that m is monic. But then f factors through

the subobject m : P → B so we must have that m is an isomorphism. B
nm−1

−−−→ C is thus
the desired diagonal fill in for the diagram.
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Definition 6.4. Let C be a category. We say that C is regular if C has all finite limits and
images and in which all strong epimorphisms are stable under pullback. Furthermore, we
say that a functor G : C → D between regular categories is regular if it preserves all finite
limits and strong epimorphisms.

Example 6.5. Set is regular.

Example 6.6. If D is regular then so is [C,D] for any C with finite limits and images
constructed pointwise.

Example 6.7. If C is regular and T = (T, η, µ) is a monad on C such that T preserves
strong epimorphisms then CTis regular with finite limits and images created by the forgetful
functor CT → C. In particular, any category monadic over Set is regular.

Example 6.8. Top has images but isn’t regular. However, Topop is regular.

Definition 6.9. Let C be a category that has pullbacks and f : A → B a morphism in C.
We define the kernel pair of f to be the pullback of f against itself. In other words, it is
the limit of the diagram

A

A B

f

f

Proposition 6.10. Let C be a regular category. Then the strong epimorphisms in C coincide
with the regular epimorphisms.

Proof. Suppose that f : B → C is a regular epimorphism. That is to say, f occurs as the
coequaliser of some parallel pair g, h : A ⇒ B. We first claim that f is epic. To this end,
suppose that we are given morphisms x, y : B → D such that xf = yf . We want to prove
that x = y. Note that

xf = yf =⇒ xfg = yfg =⇒ xfg = yfh

and so xf and yf coequalise g and h. They must therefore factorise uniquely through
f . Clearly the unique factorisations are given by x and y respectively. But these are two
factorisations of the same cocone through the coequaliser so we must have that x = y whence
f is epic. We must now show that f is a strong epimorphism. Hence consider the diagram

A B C

D E

g

h
x

f

y

k

with k monic. We need to show that there exists a t : C → D such that x = tf and y = kt.
Since f coequalises g and h, we have that fg = fh. Post composing by y gives yfg = yfh.
By commuativity of the diagram, we have that kxg = kxh whence xg = xh since k is monic.
x thus coequalises g and h and there exists a unique t : C → D such that x = tf . To see
that y = kt, note that yx = ktf and so yf = ktf . But f is epic and so y = kt as desired.

Now suppose that f : B → C is a strong epimorphism. We need to show that f occurs
as the coequaliser of some two morphisms. Let a, b : R → A be the kernel pair of R whose
existence is guaranteed by the fact that C is regular and so, in particular, has all finite limits.
We claim that f is a coequaliser for a and b. By commutativity of the kernel pair, we have
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that fa = fb so we just need to show that, given any g : B → C that coequalises a and b
we have that g factors uniquely through f . We may form the image I of (f, g) so that we

have A
h−→ I

(k,l)
� B × C. It suffices to show that k is an isomorphism. Indeed, if that were

the case, we would have that lk−1f = lk−1kh = lh = g with uniqueness following from the
fact that f is epic.

Observe that k is strong epic since kh = f is strong epic. It thus suffices to show that k
is monic. Suppose we are given morphisms x, y : D ⇒ I satisfying kx = ky. We may form
the pullback

E D

A× A A× I I × I

m

(n,p) (x,y)

(1A,h) (h,1A)

Since strong epimorphisms are stable under pullback in C and (1A, h) and (h, 1A) are strong
epimorphisms, it follows that m is a strong epimorphism. Note that

fn = khn = kxm = kym = khp = fp

and so (n, p) factors through (a, b), say by E
q−→ R. We have that kha = khb and (k, l) is

monic so ha = hb. Then xm = hn = haq = hbq = hp = ym. But m is epic and so x = y
whence k is monic.

Definition 6.11. Let C be a category that has all finite limits and a, b : R ⇒ A a parallel
pair in C.

1. We say that (a, b) is a relation if R
(a,b)−−→ A× A is monic.

2. We say that (a, b) is reflexive if there exists A
r−→ R such that ar = br = 1A.

3. We say that (a, b) is symmetric if there exists A
s−→ R such that as = b and bs = a.

4. We say that (a, b) is transitive if, given the pullback

T R

R A

q

p a

b

there exists t : T → R such that at = ap and bt = bq.

Moreover, if all the above hold then we say that (a, b) is an equivalence relation.

Proposition 6.12. Let C be a category with all finite limits and f : A→ B be a morphism
in C. Then the kernel pair of f is an equivalence relation.

Proof. Let (a, b) be the kernel pair of f . We first show that (a, b) is a relation. Suppose
that we are given a parallel pair x, y : D ⇒ R such that (a, b)x = (a, b)y. We need to show
that x = y. By the universal property of the pullback, there exists a unique u : D → R
such that au = ax and bu = by. But then u and x are two factorisations of the same cone
(which is guaranteed to be a cone by the fact that (a, b)x = (a, b)y) through the pullback so
we must have that u = x. Similarly, u = y and so x = y.

We next show that (a, b) is reflexive. Consider the cone over the parallel pair whose apex
is A and whose legs are 1A. Then this cone completes the parallel pair to a commutative
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diagram and so it must factor through the pullback. In particular, there exists a (unique)
r : A→ R such that ar = br = 1A.

We now show that (a, b) is symmetric. This is easy to see by considering the cone that
is the mirror image of the pullback in the diagonal.

Finally, to show transitivity, suppose we are given such a pullback square. Then consider
the diagram

A B

T R A

A R A

B A

f

q

p

a

a

b

f

f

a
b

b

f

From this we see that there are morphisms ap : T → A and bq : T → A. We first claim that
these form a cone over the parallel pair f, f : A⇒ B. In other words, we have to show that
fap = fbq. We have that

fap = fbp = faq = fbq

by the commutativity of the diagram. This cone must factor through the pullback so there
exists some (unique) t : T → R such that ap = at and bq = bt as desired.

Definition 6.13. Let C be a category that has all finite limits and (a, b) an equivalence
relation in C. We say that (a, b) is effective if it occurs as the kernel pair of some morphism
in C. Furthermore, if C is regular then we say that C is effective regular (or Barr exact)
if every equivalence relation in C is effective.

Example 6.14. Set is effective regular.

Example 6.15. D is effective regular if and only if [C,D] is effective regular.

Example 6.16. Let C be effective regular and T a monad on C such that T preserves strong
epimorphisms. Then CT is effective regular.

Example 6.17. tfAbGrp is regular but not effective. Indeed, the equivalence relation
{ (a, b) ∈ Z2 | a ≡ b (mod 2) } is a non-effective equivalence relation on Z.

Definition 6.18. Let C be a regular category and A ∈ ob C an object.

1. We define the support of A, denoted σA to be the image of the unique morphism
A→ 1.

2. We say that A is well-supported if σA ∼= 1 (in other words, A→ 1 is strong epic).

3. We say that A is totally-supported if all its objects are well-supported.

4. We say that an object 0 ∈ C is strict if any morphism A→ 0 is an isomorphism.

Moreover, we say that C is almost totally supported if every object of C is either well-
supported or strict.
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Lemma 6.19. Let C be a regular category and 0 ∈ C a strict object. Then 0 is initial.

Proof. We need to show that, given an object A ∈ ob C, there exists a unique morphism
0→ A. We first show existence. Consider the product 0×A. Then we have an isomorphism

0 × A π1−→ 0 and so 0
π−1
1−−→ 0 × A π2−→ A exists. To show uniqueness, suppose we are given

a parallel pair f, g : 0 ⇒ A. Then the equaliser of f and g is a morphism 0
e−→ A such

that fe = ge. But 0 is strict so f must b an isomorphism. In particular, it is epic and so
f = g.

Theorem 6.20 (Barr’s Embedding Theorem). Let C be a small regular category. Then there
exists a small category D and a fully faithful regular functor C → [D,Set]. Furthermore, if
C is almost totally supported then D can be taken to be a monoid.

We shall only prove one aspect of this theorem:

Theorem 6.21. Let C be a small almost totally supported regular category. Then there
exists an isomorphism-reflecting regular functor F : C → Set.

Proof. We shall construct F as the colimit in [C,Set] of a diagram of representable functors.
Explicitly, J will be a meet-semilattice3 and D : J → C a diagram such that each D(j) is
well-supported and each D(j′ → j) is a strong epimorphism D(j′) → D(j). Given such

a J and diagram D, we define F = colim(Jop D−→ Cop Y−→ [C,Set]) where Y is the Yoneda

embedding. Explicitly, elements of FA are represented by morphisms D(j)
f−→ A for some j

where f ∼ f ′ if and only if the diagram

D(j ∧ j′) D(j)

D(j′) A

f

f ′

commutes.
To see that F preserves finite products, note that F1 = { ∗ } and if D(j)

f−→ A,D(j′)
q−→ B

represent elements of FA and FB then D(j ∧ j′) → D(j)
f−→ A and D(j ∧ j′) → D(j)

g−→
B induce an element of F (A × B) mapping to the given element of FA × FB. Hence
F (A×B)→ FA× FB is surjective and it is easily seen to be injective.

We next show that F preserves equalisers. Note that if 0 exists in C then F0 6= ∅. Given
a parallel pair f, g : A ⇒ B let (E, e) be a well-supported equaliser for them. Then the
equaliser of FA ⇒ FB consists of morphisms D(j) → A having equal composites with f
and g (and hence factoring through E). If E = 0 then the equaliser of FA⇒ B is ∅. Hence
F preserves all finite limits.

Now assume that for every strong epimorphism A
f−→ D(j) in C, there exists j ≤ j′

such that D(j′ → j) = f . Then F preserves strong epimorphisms. Indeed, given a strong

epimorphism A
f−→ B and a morphism D(j)

g−→ B representing an element of FB, given the
pullback

D(j′) A

D(j) B

h

f

3A meet-semilattice is a partially ordered set S such that for every non-empty finite subset has a greatest
lower bound. The greatest lower bound of the subset x, y ⊆ S is called the meet of x and y and is denoted
x ∧ y.
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then h represents an element of FA whose image under Ff is g and so Ff is surjective.
Now assume that every well-supported object of C occurs as D(j) for some j. Then F

preserves properness of subobjects. Indeed, the element of FA representing D(j)
1−→ A can’t

be in the image of FA′ � FA for any proper subobject A′ � A. Indeed, if it were, we
would have

D(j′) A′

D(j) A1

Since F preserves equalisers, it follows that F is faithful. Hence F reflects monomorphisms
and so the argument above shows that it reflects isomorphisms.

We now construct the category J as the union
⋃
n=0∞ Jn of an increasing sequence of

sub-semilattices Jn. Let J0 = { 1 } and D(1) = 1 where 1 is the terminal object of C. Objects
of J1\J0 are non-empty finite sets A1, . . . , An of well-supported objects of C ordered by ⊇
(so that j ∧ j′ = j ∪ j′) and D({A1, . . . , An) } =

∏n
i=1 Ai. Note that this is well-supported

if A and B are well-supported: we have a pullback

A×B A

B 1

A

If j′ ⊇ j then D(j′ → j) is the product projection
∏

A∈j′ A →
∏

A∈j A. An object of J2\J1

is a pair (j1, { f1, . . . , fn }) where j1 ∈ J1\J0 and { f1, . . . , fn } is a non-empty finite set of
strong epimorphisms with codomain D(j) (equivalently, well-supported objects of C/D(j1).
The meet of (j1, { f1, . . . , fn }) and (j′1, { g1, . . . , gm }) has first coordinate j1 ∧ j′1 and then
we take the union of the strong epimorphisms obtained by pulling back the fi and gi along
D(j∧j′)→ D(ji) and D(ji∧j′i)→ D(j′i). We define D((j1, { f1, . . . , fn })) to be the domain
of the objet

∏n
i=1 fi of C/D(ji) and D(j2 ∧ j′2)→ D(j2) is the composite of the appropriate

product projection in C/D(ji ∧ j′i) with the appropriate pullback of D(ji ∧ j′i)→ D(ji).
Continuing in this way, we can construct the Jn. It remains to show that we have satisfied

the condition for F to preserve strong epimorphisms. If A = D(j) where j ∈ Jn\Jn−1 and

B
g−→ A is a strong epimorphism then B = D((j, { g })) and g = D((j, { g })→ j).

Remark. Let M be the monoid of endomorphisms of F : C → Set in [C,Set]. Then M
acts on every FA so we can regard F as taking values in [M,Set]. As such, it’s still regular
and faithful but is also full.

Given a regular category C and S � 1 in C, we write CS for the full subcategory of C on
objects A with σA ∼= S. This is closed in C under non-empty finite products, images and
pullbacks of strong epimorphisms. Indeed, if we’re given

P A

B C

h

k f

g

with f strong epic then k is strong epic so σP = σB.

Definition 6.22. Let C be a category. Let C+ denote the category whose objects are those
of C plus a new object 0 with one morphism 0 → A and no morphisms A → 0 for each
A ∈ ob C.
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Remark. In C+
S , every finite diagram has a limit. If it lies in CS and has a limit there then

that is its limit in C+
S . Otherwise, its limit is the unique cone with apex 0. C+

S is regular.
Indeed, the new morphisms 0 → A are monic and hence are their own images and strong
epimorphisms are still stable under pullbacks. It is also almost totally supported. Note that
C/S may be identified with the full subcategory of C on objects with support ≤ S so its
well-supported objects are those of CS. We have a collapsing functor E : C/S → C+

S sending
all objects of CS to themselves and everything else to 0. E is regular and we have a regular
functor (·)×S : C → C/S (it preserves finite limits because its right-adjoint to the forgetful
functor and images because they’re stable under pullback along S → 1.

Theorem 6.23. Let C be a small regular category. Then there exists a set I and an
isomorphism-reflctin regular functor C → SetI .

Proof. Let I = SubC(1) and for each S ∈ I, consider the composite

Gs : C (·)×S−−−→ C/S E−→ C+
S

Fs−→ Set

where Fs is the functor from the previous theorem. Then the Gs are all regular and they

jointly reflect isomorphisms. Indeed, if A
f−→ B is not an isomorphism in C, let S = σB.

Then E(f × S) is either f itself (if σ(A) = S) or 0→ B (otherwise). In either case, it’s not
an isomorphism so its image under Fs is not an isomorphism.

7 Additive and Abelian Categories

Definition 7.1. Let A be a category equipped with a forgetful functor U : A → Set. We
say that a locally small category C is enriched over A if the hom-functor C(·, ·) : Cop×C →
C → Set factors through U .

1. If C is enriched over Set∗, we call C a pointed category.

2. If C is enriched over CMon, we call C a semi-additive category.

3. If C is enriched over AbGrp, we call C an additive category.

Moreover, functors between such categories that preserve the enrichment structures are
referred to as pointed and (semi-)additive.

Remark. If C is a pointed category then for every pair (A,B) of objects of C, there is a
distinguished morphism 0A,B ∈ C(A,B) which is compatible with composition of morphisms.

In other words, given morphisms C
f−→ A and B

g−→ C then 0A,Bf = 0C,B and g0A,B = 0A,C .
If C is a semi-additive category then for every pair (A,B) of objects of C, C(A,B) can be

endowed with the structure of a commutative monoid and such an endowment is compatible
with composition of morphisms.

If C is an additive category then for every pair (A,B) of objects of C, C(A,B) can be
endowed with the structure of an abelian group and such an endowment is compatible with
composition of morphisms.

Lemma 7.2. Let C be a pointed category. Given an object I ∈ ob C, the following are
equivalent

1. I is terminal
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2. I is initial

3. 1I = 0I,I

Proof. It suffices to show that (2) and (3) are equivalent since the equivalence of (1) and
(3) is dual. To this end, suppose that I is an initial object of C. Then there is a unique
morphism I → I which is forcibly 1I and 0II .

Now suppose that 1I = 0I,I . Fix an object B ∈ ob C. We need to show that there exists
a unique morphism I → B. Let f : I → B be a morphism. Then f = f1I = f0II = 0I,B
and so 0I,B is the unique morphism I → B.

Lemma 7.3. Let C be a semi-additive category and A,B,C ∈ ob C. Then the following are
equivalent

1. There exist morphisms C
π1−→ A and C

π2−→ B such that C is the product of A and B.

2. There exist morphisms A
ν1−→ C and B

ν2−→ C such that C is the coproduct of A and B.

3. There exist morphisms A C B
ν1

π1 π2

ν2
such that π1ν1 = 1A, π2ν2 = 1B, π1ν2 =

0B,A, π2ν1 = 0A,B and ν1π1 + ν2π2 = 1C.

Proof. It suffices to show that (1) and (3) are equivalent since the equivalence of (2) and
(3) is dual. To this end, suppose that we are given morphisms C

π1−→ A and C
π2−→ B such

that C is the product of A and B. Define η1 and η2 to be the unique morphisms satisfying
the first four equations of the third statement. Then

π1(ν1π1 + ν2π2) = π1ν1π1 + π1ν2π2

= 1Aπ1 + 0B,Aπ2

= π1 + 0C,A

= π1

Similarly, π2(ν1π1 + ν2π2) = π2. By the universal property of the product, we must then
have that ν1π1 + ν2π2 = 1C since it is a factorisation of the πi through themselves.

Conversely, suppose that the third statement holds. We claim that π1 and π2 make C

into a product of A and B. To this end, we must show that, given morphisms D
h−→ A and

D
k−→ B then the cone D factors through the limit cone C uniquely. Consider the morphism

D → C given by ν1h+ ν2k. Then

π1(ν1h+ ν2k) = π1ν1h+ π1ν2k

= 1Ah+ 0B,Ak

= h+ 0D,A

= h

Similarly, π2(ν1h+ ν2k) = k. It suffices to show that such a factorisation is unique. Indeed,
suppose we are given another morphism l : D → C satisfying π1l = h and π2l = k. Then

l = 1C l = (ν1π2 + ν2π2)l

= ν1π2l + ν2π2l

= ν1h+ ν2k
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Definition 7.4. Let C be a category. We say that 0 ∈ ob C is a zero object if it is both
initial and terminal. Moreover, given A,B ∈ ob C, we say that C is a biproduct of A and
B if it is both a product and coproduct of A and B.

Lemma 7.5. Let C be a category. If C has a zero object then it can be endowed with a
unique pointed structure.

Proof. Given A,B ∈ ob C, define 0A,B to be the unique morphism A → 0 → B. We then
have a unique enrichment of C over Set∗ given by (A,B) 7→ (C(A,B), 0A,B).

Lemma 7.6. Let C be a pointed category with all finite products and coproducts. If for every
pair of objects (A,B) the canonical morphism

c : A+B → A×B

defined by πicνj = δij is an isomorphism then C admits a unique semi-additive structure.

Proof. Given a parallel pair f, g : A⇒ B let f +L g denote the composite

A A× A A+ A B
(1
1) c−1 (f,g)

and f +R g the composite

A B ×B B +B B

(
f
g

)
c−1 (1,1)

We claim that +L = +R and is the unique semi-additive structure on C. It follows immedi-
ately by construction that h(f +L g) = hf +L hg and (f +R g)k = fk +R gk whenever such
compositions are defined. We next show that f +L 0A,B = f . Indeed, consider the diagram

A A× A A+ A B

A

(1
1)

1A

c−1

π1

(f,0A,B)

(1,0)

f

Now, all three triangles in this diagram are clearly commutative whence f +L 0A,B = f .
Similarly, 0A,B +L f and dually for +R. Now consider the composite

A A× A A+ A B ×B B +B B
(1
1) c−1

(
f g
h k

)
c−1 (1,1)

The composite A→ B×B is
(
f+Lg
h+Lk

)
so that the above is equal to (f +R h) +L (g+R h). On

the other hand, it also equals (f +R h) +L (g +R h).
Setting g = h = 0 yields f +R h = f +L h so that +R = +L. Moreover, setting

f = k = 0 yields g + h = h + g so + = +L = +R is commutative. Setting g = 0 yields
f + (h+ k) = (f + h) + k so + is associative. Hence + defines a semi-additive structure on
C.

To show that it is the unique semi-additive structre on C, let +a be another semi-additive
structure on C. By Lemma 7.3 we have

c−1 = ν1π1 +a ν2π2

so that the definitions of +L and +R coincide with +a.

Corollary 7.7. Let C and D be semi-additive categories with finite biproducts. Then a
functor F : C → D is semi-additive if and only if it preserves finite biproducts.
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Proof. First suppose that F is semi-additive. Let C
π1−→ A and C

π2−→ B be such that C
is a product of A and B. By Lemma 7.3, there exist morphisms ν1 and ν2 fitting in the

diagram A C B
ν1

π1 π2

ν2
such that π1ν1 = 1A, π2ν2 = 1B, π1ν2 = 0, π2ν1 = 0 and

ν1π1 + ν2π2 = 1C . Since F is semi-additive, we may apply F on these definitions and
relations to yield morphisms satisfying the same conditions in D. We may then conclude
by the equivalence of Lemma 7.3 that Fπ1 and Fπ2 make FC a product of FA and FB so
that F preserves finite products. The fact that F preserves finite coproducts follows by a
dual argument. Hence F preserves finite biproducts.

Now suppose that F preserves finite biproducts. We need to show that F (0) = 0 and
F (f +g) = Ff +Fg. Since the zero object can be realised as an empty biproduct, it follows
immediately that F (0) = 0. By Lemma 7.6, we may apply F across the diagram defining
+ to get

FA FA× FA FA+ FA FB
(1
1) Fc−1 (Ff,Fg)

which is exactly Ff + Fg as required.

Definition 7.8 (?). Let C be a pointed category and A
f−→ B a morphism in C. We define

the kernel of f , denoted ker f , to be the equaliser of f and 0. Moreover, we say that a
monomorphism in C is normal if it occurs as a kernel.

Proposition 7.9 (?). Let C be an additive category. Then every regular monomorphism is
normal.

Proof. Let e : A→ B be a regular monomorphism. Recall that this means that e occurs as
the equaliser of two morphisms f and g, say. By definition of the equaliser, we have that
fe = ge and e is universal amongst such morphisms. By the additive structure of C we then
have that fe − ge = 0 whence (f − g)e = 0 = 0e. Hence e is the kernel of f − g and 0
whence e is normal.

Definition 7.10. Let C be an additive category and A
f−→ B a morphism in C. We say that

f is a pseudo-monomorphism if ker f occurs as a zero map. In other words, we have
fg = 0 implies that g = 0.

Example 7.11. In Grp every epimorphism f : G → H is normal since it occurs as the
cokernel of ker f ↪→ G. However, not every monomorphism is normal.

Example 7.12. In Set∗ ever monomorphism is normal. Indeed, if (A, a)
f−→ (B, b) is a

monomorphism then it occurs as the kernel of (B, b)→ (C, b) where C = (B \ im f) ∪ { b }.
However, not every epimorphism is normal. A normal epimorphism is bijective on elements
not mapped to the basepoints.

Lemma 7.13 (?). Let C be a pointed category with kernels and cokernels. Then a morphism
f is normal if and only if f = ker coker f .

Proof. The backwards direction is trivial. Hence suppose that f : A→ B is normal so that
f = ker g for some morphism g : B → C. Then gf = 0 so that g coequalises f so it must
factor as h coker f . Now suppose we have a morphism k : A → B equalising coker f and 0
so that coker(f)k = 0. Then gk = h coker(f)k = h0 = 0. Hence k must factor uniquely
through f = ker g, say k = fl. But k was an arbitrary morphism equalising coker f and 0
so that f = ker coker f .
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Lemma 7.14 (?). Let C be a pointed category with kernels and cokernels and such that every
monomorphism is normal. Then C has images. In particular, the image of a morphism f
is exactly ker coker f .

Proof. Fix a morphism A
f−→ B. Recall that f has an image if there exists a minimal

subobject of B through which f factors. Now note that f factors through ker(B
g−→ C) if

and ony if gf = 0 if and only if g factors through coker f if and only if ker coker f factors
through ker g so that ker coker f is the smallest subobject of B through which f factors.

Definition 7.15. Let A be a category. We say that A is abelian if

1. A is additive.

2. A has finite biproducts, kernels and cokernels.

3. All monomorphisms and epimorphisms of A are normal.

Example 7.16. AbGrp is abelian. More generally, so is ModR for any commutative ring
R.

Example 7.17. If A is abelian and C is an arbitrary category then [C,A] is abelian with
everything defined pointwise.

Example 7.18. Let A be abelian and C be additive. Then the full subcategory Add(C,A)
of [C,A] consisting of additive functors A → A is abelian. We note that ModR =
Add(R,AbGrp) where we regard R as an additive category with one object.

Example 7.19. tfAbGrp is additive but not abelian. Indeed, it does not possess cokernels.

Lemma 7.20. Let C be an additive category with finite biproducts and consider the (not
necessarily commutative) square

A B

C D

f

g h

k

1. The above square is commutative if and only if the flattening composition

A B + C D

(
f
g

)
(h,−k)

is zero.

2. The above square is a pullback if and only if
(
f
g

)
= ker(h,−k).

3. The above square is a pushout if and only if (h,−k) = coker
(
f
g

)
Proof. The flattening is simply the morphism fh− gk which is 0 if and only if fh = gk.

To see thet second part, note that ker(h,−k) is a morphism
(
f
g

)
such that (h,−k)

(
f
g

)
=

fh − gk = 0 and universal among such. But this is exactly what it means for the above
diagram to be a pullback.

The third part follows dually.

59



Corollary 7.21. Let A be an abelian category. Then epimorphisms in A are stable under
pullback.

Proof. Suppose we are given a pullback square

A B

C D

f

g h

k

with h epic. We first claim that this square is also a pushout. By Lemma 7.20, it suffices
to show that (h,−k) = coker

(
f
g

)
. By the same Lemma, we have that

(
f
g

)
= ker(h,−k). But

(h,−k) is epic since h is. Since A is abelian, (h,−k) is then normal epic whence by Lemma
7.13 we see that (h,−k) = coker

(
f
g

)
as claimed.

We now claim that g is epic. Since A is abelian, it suffices to show that g is pseudo-epic.

Suppose we have a morphism C
l−→ E such that lg = 0. Then the pair (l, B

0−→ E) form a
cone under (f, g) so they must factor through (k, h), say by m : D → E. Then mh = 0
whence m = 0 since h is epic. Hence l = mk = 0 whence g is epic.

Theorem 7.22. Let A be a category. Then A is abelian if and only if it is effective regular.

Proof. First suppose that A is abelian. By Corollary 7.21, A is regular so we just need
to show that it is effective. By definition, we need to show that every equivalence relation
(a, b) : R ⇒ A occurs as the kernel pair of some morphism in C. Consider the pullback
diagram

K R

A A+ A

l

k (a,b)

(1
0)

where we have used Lemma 7.20 to see that k and l are monid. Since k is monic and A is
abelian, it is the kernel of some A

f−→ B. We claim that (a, b) is the kernel pair of f . Suppose
we are given a parallel pair x, y : C ⇒ such that fx = fy. We need to show that (x, y)
factors through (a, b). Observe that x− y equalises f and 0 so that x− y factors uniquely
as kz for some x : C → K. Since (a, b) is an equivalence relation, we may fix an r : A→ R
such that ar = br = 1A. Consider lz + ry : C → R. We have

a(lz + ry) = alz + ary = kz + y = x− y + y = xb(lz + ry) = blz + bry = 0z + y = y

so that (lz + ry) is a factorisation of (x, y) through (a, b).
Conversely, we shall first show that any reflexive relation in an additive category with

finite limits is symmetric and transitive. To this end, suppose that we are given a relation
(a, b) : R ⇒ A and a morphism r : A → R such that ar = br = 1A. To see that (a, b) is
symmetric, consider the morphism s = ra+ rb− 1R : R→ R. Then

as = ara+ arb− a = a+ b− a = b

ba = bra+ brb− b = a+ b− b = a

To see that (a, b) is transitive, consider the pullback square

T R

R A

q

p a

b
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Let t = p+ q − raq : T → R. Then

at = ap+ aq − araq = ap+ aq − aq = ap

bt = bp+ bq − brbp = bp+ bq − bp = bq

Now suppose that A is additive and effective regular. Since A is regular, it has all finite
limits and hence kernels. Moreover, Lemma 7.3 implies that A then has all finite biproducts.

We next show that A has cokernels. Since A has images, it suffices to show that all
monomorphisms have cokernels. To this end, fix a monomorphism K � kA and consider
the diagram

K + A A
(k,1)

(0,1)

This is jointly monic since if (k, 1) (xy) = (0, 1) (xy) = 0 then y = 0 and kx = 0 so x = 0.

Moreover its reflexive with common splitting A
(0
1)−−→ K + A. By the discussion above, we

have that (k, 1) and (0, 1) form an equivalence relation. Since A is effective, (k, 1) and (0, 1)
occur as the kernel pair of some morphism. Since coequalisers in regular categories are
kernel pairs, it follows that this pair of morphisms has a coequaliser. But such a coequaliser
is a cokernel for κ.

We now show that every monomorphism is normal. Consider the same diagram as above
leading to a kernel pair. Now suppose that fg = 0 for some morphism C

g−→ A. Then (g, 0)
factors as

C K + A A
(uv) (k,1)

(0,1)

by the universal property of the coproduct. Hence v = 0 whence ku = g and so k = ker f .

Finally, we must show that every epimorphism is normal. Let A
f−→ B be an epimorphism.

Then we can write A
q
−_ I

m−→ B where I is the image of f , q is a normal epimorphism and
m is both regular monic and epic. m is then an isomorphism whence f is normal.

Definition 7.23. Let C be a pointed category with kernels and cokernels. Consider a
sequence

. . . Cn Cn Cn−1 . . .
fn+1 fn

of objects and morphisms in C. We say that such a sequence is exact at Cn if im fn+1 = ker fn
or, equivalently, if coker fn+1 = coim fn.

Example 7.24. Let A be an abelian category. Then 0 → A
f−→ B is exact if and only if f

is monic.
Now consider the sequence 0 → A

f−→ B
g−→ C. By the above, this is exact at A if and

only if f is a monomorphism. It then follows that the sequence is exact at B if and only
if ker g = f . Indeed, in an abelian category, evey monomorphism is normal. By Lemma
7.13 we have that f is a normal monomorphism if and only if f = ker coker f . Appealing to
Lemma 7.14 we then see that im f = f as claimed.

Now consider the sequence 0 → A
f−→ B

g−→ C → 0. By the above, we know that this
sequence is exact at A if and only if f is monic and exact at B if and only if f = ker g. By an
argument dual to the above, we see that the sequence B

g−→ C → 0 is exact at C if and only
if g is an epimorphism. It then follows that the original sequence is exact at C if and only if
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g = coker f . Indeed, in an abelian category, every epimorphism is normal. By Lemma 7.13
we have that g is a normal epimorphism if and only if g = coker ker g. Appealing to Lemma
7.14 we see that coim g = g whence coker f = g.

Definition 7.25. Let A and B be abelian categories. We say that a functor F : A → B is
left exact if it preserves kernels and right exact if it preserves cokernels. Moreover, we
say that F is exact if it is both left and right exact so that it preserves exact sequences.

Remark. Note that a biproduct A+B is characterised by the exactness of the sequence

0 A A+B B 0
(1
0) (0,1)

together with the fact that (1
0) and (0, 1) are split. Hence any exact functor preserves

biproducts.
We further remark that if F is left exact and preserves epimorphisms then it is exact.

In particular, a regular functor between abelian categories is exact.

Theorem 7.26. Let A be a small abelian category. Then there exists a faithful exact functor
A → AbGrp. Moreover, there exists a fully faithful exact functor A → ModR for some
ring R.

Proof. We first observe that A is totally supported. Indeed, the support of an object A is
clearly isomorphic to the zero object of A. By Theorem 6.21, there exists an isomorphism
reflecting functor F : C → Set. Recall that we defined F = colimJ A(D(j), ·) : A → Set.
Since A is an abelian category it is enriched over AbGrp so we may view each A(D(j), ·) as
functors A → AbGrp. We may thus view view their colimit as living in [A,AbGrp]. The
description of F from Theorem 6.21 still works. Indeed, it is still regular since AbGrp →
Set reflects finite limits and strong epimorphisms so it is exact. Moreover, it is still faithful.
To obtain the full and faithful functor to ModR, we may repeat the process in Remark
6.

Lemma 7.27 (Snake Lemma). Let A be an abelian category and suppose we are given a
commutative diagram

0 0 0

A1 A2 A3

B1 B2 B3 0

0 C1 C2 C3

D1 D2 D3

0 0 0

62



with exact rows and columns. Then there exists a dotted morphism as above forming an
exact sequence.

Proof. Proof ommitted.

Definition 7.28 (?). Let A be an abelian category. We define a chain complex in A to
be a sequence

. . . Cn Cn Cn−1 . . .
δn+1 δn

such that δnδn+1 = 0 for all n. The complexes in A form an abelian category cA whose
objects are the complexes C• in A and whose morphisms consist of a collection of morphisms
{ fn : Cn → Dn }n∈Z such that the diagram

Cn−1 Cn

Dn−1 Dn

δn

fn−1 fn

δn−1

commutes for all n.

Remark. Note that we actually have cA = Add(Z,A) where Z is the additive category
with obZ = Z, morphisms given by Z(p, q) = Z if q = p or p − 1 and { 0 } otherwise and
composition given by p

m−→ q
n−→ r = mn if p ≥ q ≥ r ≥ p− 1 or 0 otherwise.

Definition 7.29. Let A be an abelian category and C• a complex in A. We define

1. the nth-cycles object Zn(C•) = ker δn.

2. the nth-boundaries object Bn(C•) = im δn+1.

3. the nth-homology object Hn(C•) = coker(Bn� Zn).

If we denote Qn(C•) = coker fn+1 then these definitions fit into the diagram

Cn+1 Cn Cn−1

Qn+1 Bn Zn Hn Qn Bn−1 Zn−1

δn+1 δn

Theorem 7.30 (Mayer-Vietoris). Let A be an abelian category and

0 C• D• E• 0

a short exact sequence of complexes in cA. Then there exists a long exact sequence of
homology objects in A
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Hn(C•) Hn(D•) Hn(E•)

H2(C•) H2(D•) H2(E•)

H1(C•) H1(D•) H1(E•)

H0(C•) H0(D•) H0(E•) 0

Proof. We first apply the Snake Lemma to the diagram

0 0 0

Zn(C•) Zn(D•) Zn(E•)

0 Cn Dn En 0

0 Cn−1 Dn−1 En−1 0

Qn−1(C•) Qn−1(D•) Qn−1(E•)

0 0 0

To obtain an exact sequence

0 Zn(C•) Zn(D•) Zn(E•)

Qn−1(C•) Qn−1(D•) Qn−1(E•) 0

This gives us another diagram

0 0 0

Hn(C•) Hn(D•) Hn(E•)

Qn Qn Qn 0

0 Zn−1 Zn−1 Zn−1

Hn−1(C•) Hn−1(D•) Hn−1(E•)

0 0 0
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Applying the Snake Lemma to this diagram then yields the desired sequence.

Definition 7.31. Let A be an abelian category and f•, g• : C• ⇒ D• morphisms of com-
plexes. By a homotopy of f• and g•, we mean a sequence of morphisms hn : Cn → Dn+1

such that fn − gn = dn+1hn + hn−1cn for all n. If there exists a homotopy of f• and g• then
we write f• ' g•.

Remark. We remark that a homotopy is an equivalence relation and so we can form the
quotient category cA/ '.

Lemma 7.32 (?). Let A be an abelian category and f• ' g• a homotopy of morphisms of
complexes. Then Hn(f•) = Hn(g•).

Proof. Observe that the the difference Zn(f•) − Zn(g•) is the restriction to Zn(C•) of
dn+1hn + hn−1cn. But the second term vanishes since the restriction of cn to Zn(C•) is
just 0. Composing with the quotient map Zn(D•)→ Hn(D•) kills the first term dn+1hn and
so Hn(f•)−Hn(g•) = 0.

Definition 7.33 (?). Let C be a category. We say that C has enough projectives if for
all objects A ∈ ob C there exists an epimorphism P � A with P projective.

Definition 7.34 (?). Let A be an abelian category and A ∈ ob C an object. We say that a
sequence

. . . Pn Pn−1 . . . P1 P0 A 0

in A is a projective resolution if each Pi is projective.

Lemma 7.35 (?). Let A be an abelian category with enough projectives. Then every object
of A has a projective resolution.

Proof. Fix an object A ∈ obA and choose a P0 � A with P0 projective. Let K0 → P0 =
ker(P0 → A) and choose P1 � K0 with P1 projective. Continuing in this fashion, we can
construct a projective resolution of A.

Lemma 7.36 (?). Let A be an abelian category, A,B ∈ obA and P•, Q• projective resolu-
tions of A and B respectively. Then for all f : A → B there exists f• : P• → Q• such that
H0(f•) = f and any such morphisms of chain complexes are unique up to homotopy.

Proof. Consider the diagram

. . . P2 P1 P0 A

. . . Q2 Q1 Q0 B

p2 p1

f0

p0

f

q2 q1 q0

Since P0 is projective, there exists a morphism f0 making the right hand square of the
diagram commute. Now, 0 = fp0p1 = q0f0p1 so that f0p1 factors through ker q0 = im q1, say
by k : P1 → im q1. We thus have the following diagram

P1

Q1 im q1 Q0

f1 k
p1f0
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Since P1 is projective, we therefore have a morphism f1 : P1 → Q1 making this diagram
commute. Continuing in this fashion, we can construct a morphism of chain complexes
f• : P• → Q•. It then follows immediately that H0(f•) = f .

Now let g• : P• → Q• be another morphism of projective resolutions. Consider the
diagram

P0 A

Q0 B

p0

f0g0 f

q0

Then q0(f0 − g0) = fp0 − fp0 = 0 so that f0 − g0 factors through ker q0 = im q1, say by k.
We then have the diagram

P0

Q1 im q1 Q0

h0 k
f0−g0

Since P1 is projective, there exists a morphism h0 : P0 → Q1 making this diagram commute.
In other words, we have f0 − g0 = q1h0. Now,

q1(f1 − g1 − h0p1) = q1f1 − q1g1 − q1h0p1

= f0p1 − g0p1 − (f0 − g0)p1

= f0p1 − g0p1 − f0p1 + g0p1

= 0

so that f1 − g1 − h0p1 factors through ker q1 = im q2, say by k. We then have the diagram

P1

Q2 im q2 Q1

h1 k
f1−g1−h0p1

Since P1 is projective, there exists a morphism h1 : P1 → Q2 making the above diagram
commute. In other words, q2h1 = f1 − g1 − h0p1 and so f1 − g1 = q2h1 + h0p1. Continuing
in this fashion, we may construct a homotopy h• : f• → g•.

Remark. From this Lemma we see that projective resolutions of objects in an abelian
category are unique up to homotopy.

Definition 7.37. Let A and B be abelian categories such that A has enough projectives.
Given an additive functor F : A → B we define the left-derived functors of F to be
L•F (A) = H•(FP (A)) where P (A) is a projective resolution of A ∈ obA.

Remark. This is well-defined since projective resolutions are unique up to homotopy and
homology objects are invariant under homotopy.

Moreover, if F is an exact functor then L0F ∼= F and LnF = 0 for all n > 0. If F is
right exact then we still have that L0F ∼= F since FP1 → FP0 → FA → 0 is exact but it
may be the case that LnF are zero for n > 0.

Theorem 7.38. Let A and B be categories such that A has enough projectives. If F : A → B
is an additive functor and
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0 A B C 0a b c

is a short exact sequence in A then there exists a long exact sequence of left-derived functors

LnFA LnFB LnFC

L2FA L2FB L2FC

L1FA L1FB L1FC

L0FA L0FB L0FC 0

Proof. We first claim that, given projective resolutions P• of A and R• of C, there exists a
projective resolution Q• of B such that Qn = Pn +Rn and

Pn Pn +Rn Rn

(1
0) (0,1)

are morphisms of chain complexes. We first observe that we have the following diagram

. . . P2 P1 P0 A

P2 +R2 P1 +R1 P0 +R0 B

. . . R2 R1 R0 C

p2

(1
0)

p1

(1
0) (1

0)

p0

f

(0,1) (0,1)

(fp0,t)

(0,1) g

r2 r1 r0

t

Since R0 is projective, there exists a morphism t : R0 → B so that r0 = gt. We claim that
(fp0, t) is an epimorphism. Since B is abelian, it suffices to show that it is pseudo-epic. To
this end, suppose that x(fp0, t) = 0. Then xfp0 = 0. Since p0 is epic, it follows that xf = 0.
Hence x factors through coker f = g, say by y. Then 0 = xt = xygt = yr0. But r0 is epic
whence y = 0 and so x = 0.

Now let K0, L0,M0 be the kernels of p0, (fp0, t) and r0 respectively. By the snake lemma,
we have that 0→ K0 → L0 →M0 → 0 is exact. Then we have the following diagram

P1 K0 P0 A

P1 +R1 L0 P0 +R0 B

R1 M0 R0 C

(1
0) (1

0)

p0

f

(0,1)

(fp0,t)

(0,1) g

r0

In exactly the same fashion as before, we can construct an epimorphism P1 + R1 → L0.
Continuing in this way, we construct the claimed projective resolution of B.

Now, F is an additive functor and so preserves the exactness of the columns 0→ Pn →
Qn → Rn → 0. The result then follows from the Mayer-Vietoris Theorem applied to the
exact sequence 0→ FP• → FQ• → FR• → 0.
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